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Abstract: This paper presents a new method for designing 
robust adaptive sliding mode flux observer for induction 
motor drive. The idea is to combine singular perturbation 
and sliding mode techniques, obtaining in this way, the so-
called two-time-scale sliding mode observer. The method 
assumes that the rotor speed signal is available. The 
control algorithm is based on the indirect field oriented 
sliding mode control with an on-line adaptation of the 
rotor resistance to keep the machine field oriented. The 
control-observer scheme seeks to provide asymptotic 
tracking of speed and rotor flux in spite of the presence of 
an uncertain load torque and unknown value of the rotor 
resistance. The validity for practical implementation has 
been verified through computer simulations. 
 
Key words: Induction motor, singular perturbation theory, 
sliding mode control, sliding mode observer, stability. 
 
1. Introduction 
 The control of the induction motor has attracted much 
attention in the past few decades. One of the most 
significant developments in this area has been the field 
oriented control. The orientation of the flux made possible 
to act independently on the rotor flux and the 
electromagnetic torque through the intermediary of the 
components of the stator voltage. There are two major 
types, called direct and indirect field orientation [1, 2]. 
 In the last years, the sliding mode technique has been 
widely studied and developed for the control and state 
estimation problems since the works of Utkin [3]. This 
control technique allows good steady state and dynamic 
behavior in the presence of system parameters variation 
and disturbances [4, 5].  
 For induction motor, rotor speed and stator currents 
are easily measured but rotor fluxes are rather difficult to 
measure. In fact, different observer structures have been 
proposed to estimate those fluxes from rotor speed and 
stator currents [6, 7, 8, 9].  
 In other hand, singular perturbation theory provides 
the mean to decompose two-time-scale systems into slow 
and fast subsystems which greatly simplifies their 
structural analysis and control design [10].  

 So, the idea of combining singular perturbation theory 
and sliding mode technique constitutes a good possibility 
to achieve classical control objectives for systems having 
unmodeled or parasitic dynamics and parametric uncer-
tainties [11, 12, 13, 14]. Therefore, the decomposition of 
the original multi-time-scale system into separate slow 
and fast subsystems permits a simple analysis and design.  
 In this paper, a sequential methodology is used to 
design a robust sliding mode observer in order to estimate 
the slow electromagnetic variables (rotor flux) under the 
assumption that only the fast variables (stator currents) 
and the motor speed are available for measurement.  
 This paper is organized as follows: We first recall the 
methodology of model reduction by the singular 
perturbation theory and present the design of a general 
two-time-scale sliding mode observer in Section 2 and 
Section 3, respectively. In Section 4, we briefly review the 
indirect field oriented sliding mode control of induction 
motors. In Section 5, the design of the proposed two-time-
scale sliding-mode observer for induction motors is 
presented. In that section, a stability analysis study of this 
observer is made via singular perturbation and Lyapunov 
theories. In Section 6, and through simulation, the studied 
observer is associated to the indirect field oriented sliding-
mode control where rotor fluxes are replaced by those 
delivered by the proposed observer. Finally, in Section 7, 
we give some comments and conclusions. 
 
2. Two-Time-Scale Approach 
 The two-time-scale approach can be applied to 
systems where the state variables can be split into two 
sets, one having “fast” dynamics, the other having “slow” 
dynamics. The difference between the two sets of 
dynamics can be distinguished by the use of a small 
multiplying scalar ε . Generally, the scaling parameter ε  
is the speed ratio of the slow versus fast phenomena. 
 If the slow states are expressed in the t time-scale, 
then, the fast ones will be in the  time-scale defined by  τ
 

ε−=τ /)( 0tt                              (1) 
 

 The reader is referred to [10] for a general theory on 
singular perturbation. 
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2.1. Nonlinear singularly perturbed systems 
 Let us consider the following class of nonlinear 
singularly perturbed systems described by the so-called 
standard singularly perturbed form 
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Where  is the slow state,  is the fast state, 
 is the control input and  is a small positive 

parameter such that .  are assumed to 
be bounded and analytic real vector fields, and consider a 
vector of measurement that are linearly related to the fast 
state vector as 
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2.2. Slow reduced subsystem  
 In the limiting case, as  in (2), the asymptoti-
cally stable fast transient decays ‘instantaneously’, leaving 
the reduced-order model in the t time-scale defined by the 
quasi-steady-states  and .   

0→ε
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and the substitution of a root of (5)  
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into (4) yields a reduced model  
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Where the index  indicates that the associated quantity 
belongs to the system without 

)(s
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2.3. Fast reduced subsystem  
 The fast dynamic (also know as boundary layer 
system) denoted , which represents the derivation of  
from 

fz sz

z  is obtained by transforming the slow time scale t 
to the fast time scale . System of equation 
(2) becomes  
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 Introducing the derivation of fromsz z , i.e., sf zzz −=  
and again examine the limit as 0→ε . Then, it yields  

          ( )  )),(),()0(, 00 tuzzxfz
d
d

ffszf ττ+=
τ

       (9) 

With 
)0()0( 0 sf zzz  −=  

 

Where  is the fast part of the input control. sf uuu −=  

2.4. Two-Time-Scale variables approximation 
 Fast and slow variables given by (7) and (9) can be 
combined into a composite structure in order to approx-
imate the original states of (2) as given in [10]: 
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3. Two-Time-Scale Sliding Mode Observer 
 Consider the above continuous nonlinear singularly 
perturbed system of equation (2) which is given by  
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It is also assumed that the above system is observable. 
Consequently, the observer design may be considered for 
the state observation of slowly variables from the 
measurement of fast variables [12, 13, 14]. 
 
3.1. Sliding mode observer design  
 By structure, observer based on sliding mode approach 
is very similar to the standard full order observer with 
replacement of the linear corrective terms by a 
discontinuous function [7, 12].  
 The corresponding sliding mode observer for the 
system of (11) can be written as a replica of the system 
with an additional nonlinear auxiliary input term as 
follows: 

⎪⎩

⎪
⎨
⎧

+ε=ε

+ε=

szz

sxx

IGuzxfz

IGuzxfx

),,,ˆ(ˆ

),,,ˆ(ˆ
&

&
                     (12) 

 

Where ( ))ˆ,( yySsignI s =  is the switching function.  and 
 are the gain matrices with  and 

xG

zG )( mn× )( mm×   
dimensions respectively, to be determined. 
 

 The sliding mode function  can be chosen as a linear 
function of 

S
)ˆ( yy − as given in [7, 12], so  
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Where  and [ ])(...)()()( ˆˆˆˆ 2211 mm yyyyyyyy T −−−=−

Λ  is )( mn×  gain matrix to be specified. 
 

 The error dynamics is calculated by subtracting (12) 
from (11): 
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 The observer gains design can be based on sequential 
application of resulted subsystems of (15) by applying 
singular perturbation methodology. We first need to 
analyze the fast variables tracking properly using the so-
called reaching condition, and, thereafter, the slow 
variables asymptotic-convergence. 
 
3.2. Stability analysis in the fast time-scale 
 For fast error dynamic subsystem, the associated time 
scale is defined by , then (15) can be 
transformed into  

ε−=τ /)( 0tt
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Setting  in (15), it yields 0=ε
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 In this time-scale, the stability analysis consists of 
determining so that in this time scale , the surface zG )(τ

0)( =τS  is attractive. 
 It can be shown that when sliding mode occurs on 

)(τS , the equivalent value of the discontinuous observer 
maxillary input is found by solving the equation (18) for 

 after insuring zero for sz IG τddez  
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and the equivalent switching vector is obtained as 
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3.3. Stability analysis in the slow time-scale 
 Slowly error dynamic subsystem can be found by 
making  in (15), so  0=ε
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From (21), the equivalent switching vector can be re-
found  

zzs fGI ∆= −1~  
Therefore, by appropriate choice of G the desired rate of 
convergence xe n be obtained. 

x , 
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4. Sliding Mode Control Review of I.M 
 Assuming that the induction model system is 
controllable and observable, the sliding mode control 
consists into two phases:  
• Designing an equilibrium surface, called sliding surface, 

such that any state trajectory of the plant restricted to 

the sliding surface is characterized by the desired 
behavior;  

• Designing a discontinuous control law to force the 
system to move on the sliding surface in a finite time.  

 
4.1. Dynamic model of induction motor 
 Under the assumptions of linearity of the magnetic 
circuit and neglecting iron losses, the state space model of 
three-phase induction motor expressed in the 
synchronously rotating reference frame  is )( qd −
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With constants defined as follows 
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Where the state variables are the stator currents , the 
rotor fluxes 

), sqi( sdi
),( rqrd φφ  and the rotor speed ω . Stator 

voltages  and split frequency (),( sqsd vv slω ω−ω=ω ssl ) 
are the control variables. The electromagnetic torque 
expressed in terms of the state variables is  
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4.2. Rotor field oriented induction motor model  
 Among the various sliding mode control solutions for 
induction motor proposed in the literature, the one based 
on indirect field orientation can be regarded as the 
simplest one. Is purpose is to directly control the inverter 
switching by use of two switching surfaces. 
 The induction motor equations in the synchronously 
rotating reference frame , oriented in such a way 
that the rotor flux vector points into d-axis direction, are 
the following 
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4.3. Speed and flux sliding mode controller 
 Using the reduced non-linear induction motor model 
of equation (24), it is possible to design both a speed and a 
flux sliding mode controllers. Let us defined the sliding 
surfaces  
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Where , ,  and   is the speed reference 
and  the reference rotor flux, respectively. 
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 If the Lyapunov method of stability is used to ensure 
that  is attractive and invariant, the following condition 
has to be satisfied 
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 So, it is possible to choose the switching control law 
for stator voltages as follows 
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Where  
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Proof (1): Substituting the resulted of (30) in (28), in (29) 
achieves the proof. 

The sliding mode causes drastic changes of the control 
variable introducing high frequency disturbances. To 
reduce the chattering phenomenon a saturation function 

 instead of the switching one  has been 
introduced 
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Where 0>δ i  for 2,1=i  with  and ωδ=δ1 .2 φδ=δ  
 

Remarks:  
 

• From the above control law of equation (30), it can be 
see that the implementation of these algorithms 
requires the estimation of torque load and rotor flux 
since stator currents, stator voltages and speed rotor 
are available by measures. In the next section, we are 
interested by a robust estimation of rotor flux. The 
estimated torque load can be easily obtained by using 
the mechanical equation of the induction motor model. 

 

• In the following, we will assume to operate with 
constant speed reference, rotor flux reference  and load 
torque, so that  and  ,0* =ω& 0* =rφ& .0=LT&

 

5. Two-Time-Scale Sliding Mode Observer  
     Design for I.M 
 

5.1. Dynamic model of induction motor 
 Using the model of equation (22), the state space 
model of induction motor expressed in the fixed stator 
reference frame )( β−α  is 
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Voltage, current and flux transformation from the 
synchronously to the stationary reference frame and vice 
versa is made by the rotational transformation [1, 2]: 
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Where φ,, ivx = , and sθ is the angular displacement of the 
synchronously rotating reference frame. 
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5.2. Singularly perturbed model 
 Based on the well-know of induction machine model 
dynamics [11, 14], the slow variables are ),( βα φφ rr  and 
the fast variables are  Therefore, the correspond-
ding standard singularly perturbed form, of (33), with 

,  and  is 
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5.3. Singularly Perturbed Sliding Mode Observer 
 From Section 3, the observer equations, of the above 
model, based on the sliding mode concept are  
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Equation (41) can be expressed in the matrix form as 
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Exploiting the time-properties of multi-time-scale systems 
of equations (36) and (37), are fast variables and 

 are slow variables. So, the stability analysis of 

the above system consists of determining  and  to 
ensure the attractiveness of the sliding surface 
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5.4. Fast reduced-order error dynamics  
 From singular perturbation theory, the fast reduced-
order system of the observation errors can be obtained by 
introducing the fast time-scale  System of 
equations (42) gives 
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Making 0=ε  in the above system, it yields  
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By appropriate choice of the observer gain terms  and 

 sliding mode occurs in (44) along the manifold 
1zG

,
2zG

0== zeS . 
 

Proposition (1): Assume that and are bounded in 
this time (practical assumption) and  varies slowly, and 
consider (44) with the following observer gains matrix 

1xe
2xe

ω

 

⎥
⎦

⎤
⎢
⎣

⎡
η

η
=

2

1

0
0

zG ;                          (46) 

The attractivity condition of the sliding surface 0)( =τS  
is given by  

0)( <
τd

dSS T                              (47) 

In this time-scale 0=
τd

dx  and .0=
τd

dex  

So,  
[ ][ ]szrxr

TT IGxMzeJISS
d
dS −−α∆+ω−αµ=
τ

)ˆ()(   (48) 

Or 

[ ][ ]
[ ][ ])ˆ()(                 

)ˆ()(

2212222

1121111

xMzeessigns

xMzeessignsS
d
dS

rxxr

rxxr
T

−α∆+ω−αµ−η−

−α∆+ω+αµ−η−=
τ (49) 
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Thus, (47) is verified with the set defined by the following 
inequalities:  
 

[ ]
[ ])ˆ(

)ˆ(

22122

11211

xMzee

xMzee

rxxr

rxxr

−α∆+ω−αµ>η

−α∆+ω+αµ>η
            (50) 

 

Once the trajectory reaches the sliding surface 0== zeS , 
the slowly state variables behave as if  is replaced by 
its equivalent value , which can be calculated 
from the subsystem (44) assuming  and 

sz IG

eqsz IG )(
0=ze 0=ze& .  

 
5.5. Slow reduced-order error dynamics  
 For slow error dynamics, we use the system (42) and 
setting . So, we can write 0=ε
 

 

[ szrxr IGxMzeJI −− ]α∆+ω−αµ= )ˆ()(0          (51)  
   

[ ] sxrxrx IGxMzeJIe −−α∆+ω−α−= )ˆ()(&         (52) 
 

From equation (51), we can get the equivalent switching 
vector  as sI~
 

[ )ˆ()( ]~ 1 xMzeJIGI rxrs z
−α∆+ω−αµ= −         (53) 

 

In this time-scale, we can replace  by sI sI~  in equation 
(52). So, subsystem (52) can be written as follows: 
 

[ )ˆ()( xMzeJIHe rxrx −α∆ ]+ω−α=&           (54) 
with 

)( 1−µ+−= zxGGIH                             (55) 
 
5.6. Stability analysis of the slow reduced-order error  
       observer  
 To derive adaptive law of rotor resistance, we define 
the positive-definite candidate Lyapunov function  
 

2

2

1 )(
2
1)(

2
1

rx
T

x q
q

eeW α∆+=                (56) 

where   
021 >⋅ qq                               (57) 

 

 The t-time-derivative of W is  
 

{ } rrx
T

xx
T

x dt
d

q
qeeeeW α∆α∆++=

2

1)()(
2
1

&&&       (58) 
 

 Unfortunately, the fluxes errors are not available. 
In the following, we consider how to avoid this problem. 
So, by defining the function   

)( xe

 

BAeQ rx α∆+=                           (59)  
where  

)( JIA r ω−α=  
)ˆ( xMzB −=  

 

The rotor flux error dynamics of (54) are rewriting, using 
(59), as 

QHex =&                                   (60) 

Now, replacing (60) in (58), it yields 
 

{ } rrx
TTT

x dt
d

q
qeHQQHeW α∆α∆++=

2

1)(
2
1&    (61) 

 

Proposition (2):  With the following choice  
 

TAqH 1−=                               (62) 

W& will to be negative-definite if BIG
q

dt
d T

szr )(2

µ
−=α∆  

and  .01 >q
 

Proof (2): Using (62), equation (61) becomes  
 

)1(
2

11 r
T

r
T

dt
d

q
BQqQQqW α∆+α∆+−=&      (63) 

 

Therefore, condition for (63) to be negative-definite will 
be satisfied if 

01 >q                                     (64) 
and  

BQq
dt
d T

r 2−=α∆                         (65) 
 

Using (51) and (59), the adaptive law of (65) becomes 
feasible: 
 
 

BIG
q

dt
d T

szr )(2

µ
−=α∆                  (66) 

 

With the assumptions of (57) and (64), it yields 
 

02 >q .                               (67) 
 
6. Simulation Results 
 The proposed estimation algorithm has been simulated 
for the induction motor whose data are given in appendix 
2. As a controller, the indirect field oriented sliding mode 
control is used. It is assumed that the load torque is 
unknown and all the parameters are known and constant 
except for the rotor resistance which will change during 
the operating motor. For this closed loop system, rotor 
flux feedback signal and rotor resistance are replaced with 
the estimate corresponding values of equation (37) and 
(66), respectively. With the assumption that all states 
including rotor flux and all parameters are known, rotor 
flux and rotor resistance estimated by the proposed 
method are compared to their actual values. 
 

1,5 kW 220/380 V 3,68/6,31 A 
rpm 1420=N Ω= 85.4sR  Ω= 805.3rR  

H 0,274 = Ls H 0,274  =rL  H 0,258  =M  
2  =p  2Kg.m 0,031  =J  N.m.s/rd0.00113=f

 

Table 01: Parameters of induction motor. 
 
 The sliding mode control and observer parameters 
were chosen as    ,120=λω ,120=λφ ,80=ωK ,80=φK  

,5.0=δω  ,5.0=δφ  ,251 =q   and 03.02 =q ).3,3(diagGz =  
   

 The results are summarized in this section: 
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6.1. Rotor resistance variation effect 
 This test consists in increasing the rotor resistance. As 
shown in Fig. 1(a), the motor is started with its nominal 
rotor resistance value . Then, the rotor resis-
tance of the motor model is suddenly set to  at 

 and to  at  The reference speed and 
reference rotor flux are maintained at 1400 rpm and 1.0 
Wb, respectively. Fig. 1(b) shows the speed response of 
the motor; a very good speed regulation is obtained. In 
Fig. 1(c) and 1(d), are shown the estimated rotor fluxes 
and the error between them and the actual values. It can be 
noticed the high flux tracking and the good rotor flux 
orientation. Fig. 1(e) compares the estimated and actual 
rotor resistance. After a short convergence time, the 
estimated rotor resistance reaches the actual value. Fig. 
1(f) shows the stator currents error. These results show 
that the sliding mode control with the proposed observer 
can track the reference command accurately and quickly.  

Ω= 805.3rnR

rnR5.1
,1st = rnR2 .2 st =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2. Performance under external load disturbances 
 The observer sensitivity to external load disturbances 
is also investigated in this study. The objective is to follow 
the speed and rotor flux references in spite of disturbances 
in load torque with a constant error (of +25%) in the rotor 
resistance value. This practical error is made to test the 
efficacy of the adaptive law of equation (66). Fig. 2(a) 
shows the actual and the estimated applied load torque. 
Due to the rotor inertia, the estimated load torque presents 
negative values in the start-up motor and after, it follows 
exactly the actual signal. Fig. 2(b) presents very good 
performance for speed regulation. Fig. 2(c) shows the 
motor and the real load torque. Fig. 2(d) presents the 
actual and estimated rotor resistance. Fig. 2(e) and 2(f) 
show that the completely decoupled control of rotor flux 
and torque is obtained and the observer is very robust to 
external load disturbances. 
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Fig. 2. Sensitivity of the system performance to changes in the 
external load with rnr RR 25.1= and : Wbrd 0.1* =φ

(a) Real (dotted) and estimated (solid) load torque, 
(b) Reference (dotted) and actual (solid) speed, 
(c) Load torque (dotted) and motor torque (solid),  
(d) Reference (dotted) and estimated (solid) rotor resistance, 
(e) Rotor flux estimation: φ (solid) and φ (dotted), rd

ˆ ˆ
rq

(f) Rotor flux error: e (solid) and e (dotted).  
ig. 1. Sensitivity of the system performance to changes on the 

 rotor resistance by 50% and after 100%  with : Wbrd 0.1* =φ

) Reference signals of (solid) and load torque (dotted), rR
) Reference (dotted) and actual (solid) speed, 
) Rotor flux estimation: (solid) and (dotted),  rdφ̂ rqφ̂

) Rotor flux error: (solid) and (dotted), 
rd

eφ rq
eφ

) Reference (dotted) and estimated (solid) rotor resistance,  
) Stator current error: (solid) and (dotted).  e e
αsi βsi
 φrd
 φrq
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6.3. Performance over wide speed range  
 In this case, we consider the speed tracking 
performances for wide variation range of reference speed. 
The rotor flux reference is kept at its rated value of 1.0 Wb 
and the motor is operating without external load distur-
bances. The observer performance for speed tracking is 
presented in Fig. 3(a). The actual and the estimated rotor 
resistance are shown in Fig. 3(b).   Fig. 3(d) and 3(c) show 
the estimation of the rotor fluxes and the error between the 
estimated rotor fluxes and the actual rotor fluxes, 
respectively. These results prove that the speed tracking is 
quite good and the rotor-field is always well oriented. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. Conclusion 
 A robust sliding mode roto
adaptation of the rotor resista
motor has bee derived using
Lyapunov theories. The accu
the proposed algorithm has b
oriented sliding mode cont
control-observer structure sc
estimation has been successf
The proposed sliding mod
demonstrated good performa
under rotor resistance variatio
and speed tracking. 
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Appendix: In this paper, the following notations are used: 
 

ω , refω  Angular motor speed and reference speed, 

sqsd vv ,  Stator voltages in synchronously rotating reference frame,

sqsd ii ,  Stator currents in synchronously rotating reference frame,

rqrd φφ ,   Rotor fluxes in synchronously rotating reference frame, 

βα ss vv ,  Stator voltages in stationary reference frame, 

βα ss ii ,  Stator currents in stationary reference frame, 

βα φφ rr ,   Rotor fluxes in stationary reference frame, 

sω , slω Synchronous frequency and slip frequency,  

Le TT ,  Electromagnetic and load torques, 

rs LL ,  Stator and rotor inductances, 

rs RR ,  Stator and rotor resistances, 

rs TT ,  Stator and rotor time constants, 
M , σ  Mutual inductance and leakage factor,  

pJ ,  Moment of inertia of the rotor and numbers of pole pairs, 
f  Coefficient of viscous friction. 

 

(d) 

 change in the 
: Wb0.1=

r resistance,  
tted),  

. 


