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ABSTRACT:  

 The vast majority of the system security 

application in today’s systems depends on Deep packet 

inspection. In recent years regular expression matching 

are used as an important operator which examines 

whether or not the packet’s payload can be matched with a 

group of predefined regular expression.  Regular 

expressions are parsed using the Deterministic Finite 

Automata representations. Conversely, to represent 

regular expression sets as DFA the system needs large 

amount of memory, an excessive amount of time, or an 

excessive amount of per flow state limiting their practical 

applications. There are several compression techniques 

available which provide memory efficient finite automata. 

This paper presents the analysis of these several 

compression techniques that are used to decrease the 

number of states such as HFA, History based NFA, DFA, 

Lazy DFA, NFA- OBDD, HFA, H-FA, H-cFA, XFA, D
2
FA, 

CD
2
FA, δFA, δ

2
FA, Dual Finite Automata and DFA/EC. In 

this paper the Intelligent Optimization Grouping 

Algorithms (IOGA) are discussed to resolve the state blow 

up problem. As a result of using IOGA the system provides 

memory efficient automata by dispensing the regular 

expression sets into various groups and optimizing the 

DFAs. 
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1. INTRODUCTION 
 Today, a computer network has become an 

essential part of our day by day life. Internet has a 

fast growth from the most recent decade with 

increasing requirement of society on it. Internet 

provides a wide range of benefits to society however 

it is infected by many security attacks that disrupt the 

functionality of networking and computing 

infrastructure. To enhance the security of the network 

a large number of devices are introduced. Network 

Intrusion Detection Systems (NIDS) are amongst the  

foremost broadly used for this purpose [28]. Snort 

[22] and Bro [23] are two open source NIDS 

examples that have been broadly used to safeguard 

the network. 

 Network Intrusion Detection Systems use 

Deep Packet Inspection (DPI) for a variety of 

applications that enhances security like spam, 

monitoring and detecting viruses, malevolent traffic, 

unauthorized access and attacks. The main role of 

deep packet inspection is to permit Network Intrusion 

Detection System to effectively match the details of 

the network packets with respect to signature attacks 

and thereby be aware of malicious traffic. Formerly, 

string matching algorithms were used to match the 

signature attacks. There is an increasing obstacle in 

network attacks that has possessed the society of 

research to investigate a best string matching or 

signature representation. In spite of this a large 

research community suggests the regular expression 

as a dominant signature representation. Regular 

expression consists of a character sets that identify a 

search pattern. Regular expressions are grammars 

that denote the regular language. Regular expression 

matching is a traditional problem of computer science 

and technology. The authors in [37 - 39] have made 

productive developments to promote the research of 

regular expression in algorithms and theories. There 

are mainly two primary requirements that must be 

satisfied for any regular expression representations. 

They are time efficiency and space efficiency. Space 

efficiency specifies the size of the system 

representation and it must be less so that it guarantees 

that it fits inside the main memory of NIDS.  Time 

efficiency specifies the amount of time that is 

required by the NIDS to process every byte of 

network traffic and it must be little so as to permit a 

large degree of traffic to match rapidly. 
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When compared with the simple string patterns 

regular expressions are considered to be very 

expressive and hence they are capable to represent an 

ample collection of payload signatures [25]. However 

to implement regular expressions need greater 

memory space and bandwidth. On the other hand the 

crucial task with these extremely fast regular 

expressions is to trim down the usage of memory and 

its bandwidth. 

Regular expressions are usually evaluated by 

finite automaton which is a mathematical framework 

of a system that comprises of inputs and outputs. The 

system initially begins at the start state and it can be 

in any one of the finite states. Based on the previous 

input characters read the state of the system 

understands the systems behavior for the subsequent 

input string. The finite automata can be categorized 

into Non Deterministic Finite Automata (NFA) and 

Deterministic Finite Automata (DFA) depending on 

the prime technology and current resources. The 

foremost dissimilarity among NFA and DFA is that 

for each character that is read in packet payload NFA 

can have multiple state transitions while DFA can 

have only one state transition. Owing to this NFA has 

a time complexity of O(m) where m is the number of 

states while DFA requires a large amount of memory 

for the same packet payload. 

 A significant team of research work has been 

concentrated on compression strategies which aim 

towards decreasing the memory space that are 

required to represent DFAs. The set of regular 

expression when compiled to a single DFA 

frequently leads to state blowup problem with an 

enormous or even to impractical memory 

consumption. One way to alleviate this difficulty is to 

share out the collection of regular expression into 

many groups and to build independent DFAs for each 

group. Intelligent Optimization Grouping Algorithms 

(IOGA) [12] can be utilized effectively to overcome 

the issue of state blow up problem by obtaining the 

comprehensive deal among the number of groups and 

utilization of memory. One such way to solve the 

state blow – up problem and to provide an efficient 

finite automaton is to diminish the number of DFA 

states. In the rest of the paper the various existing 

compression techniques that are used to reduce the 

DFA states are analyzed and the ways through which 

Intelligent Optimization Grouping Algorithms can be 

efficiently used to solve the state explosion problem 

are discussed. 

 The remainder of the manuscript is structured 

as follows. Section II deliberates about the regular 

expression model and types of regular expressions. 

Section III discusses and evaluates the various state 

compression techniques that are used to reduce the 

DFA states and section IV discusses about grouping 

the regular expression using Intelligent Optimization 

Grouping Algorithms and section V delivers the 

concluding remarks. 

 

2. THE REGULAR EXPRESSION  MODEL 

 Pattern Matching is a technique of finding a 

string in a text based on a specific search pattern. The 

search pattern can be effectively described using 

regular expression. Thus regular expression matching 

plays a vital role in pattern matching. To better 

understand the regular expression matching in 

network intrusion detection system the different types 

of regular expression representation and its 

characteristics has to be studied.  The most widely 

used NIDS open source tool is Snort rule set thus in 

this paper some of the important types of regular 

expression that are used frequently in Snort [22] rule 

sets are discussed. In the following section, the 

various types of regular expression and its 

characteristics are discussed in the way their 

complexities are mounted. 

 

2.1 Exact-match strings.  
 Exact-match strings are the simplest patterns 

that are mostly found in the rule set. The size of 

patterns in an exact match string is fixed and it occurs 

in the input text exactly as it is appeared. The rule set 

which contains exact match strings exposes two vital 

properties. The first vital property is that DFA based 

solutions using Aho-Corasick algorithm [15] or the 

Boyer-Moore algorithm [35] can be efficiently 

utilized given that their size depends on the number 

of characters that are present in the pattern set. 

Secondly, optimization that depends on the hashing 

schemes [27, 34] can be used for a maximum length 

pattern size and it does not measure for arbitrarily 

long strings. When analyzing the properties the exact 

match string algorithm is not so expressive and if an 

assaulter appends padding in the regular expression 

then it can’t identify malicious packets. However, the 

advantage of the exact match string regular 

expression is that it is easy to implement and can 

accomplish a high matching speed when compared 

with other types of regular expressions. 

 

2.2 Character sets and simple wildcards.  
 Character sets and simple wildcard regular 

expression are basically found in two structures either 



as [s1-sjsksl] expressions, or as  \s, \d, \a, \S, \D, \A. In 

the first structure the set incorporates all characters 

between s1 and sj, sk and s1 and in the second structure 

the set comprises of all space characters (\s), all digits 

(\d), all alphanumerical characters (\a), and their 

complements (\S, \D, \A). A wildcard is represented 

through a non-escaped dot and these sub-patterns 

represent a set of exact-match strings. As a rule, 

character sets and wildcards do not permit for 

immediate utilization of the Aho-Corasick algorithm 

[15] or the Boyer-Moore algorithm [35] and of 

hashing schemes [27, 34]. Regardless, in spending 

the time and cost for mounting the pattern set size it 

is better to perform a thorough enumeration of the 

exact match strings and to produce a less complicated 

case that do not disrupt the properties of exact match 

strings. 

 

2.3 Simple Character Repetitions.  
 The next type of regular expression is the 

simple character repetition which looks like the ch
+
 

and ch
*
 structure, where ch is any character of the 

alphabet. It does not surpass the number of characters 

in the pattern set and maintains the same size of the 

DFA. However, it is impractical to permit in-depth 

details of exact string match to reduce the regular 

expression because there are an unlimited number of 

such strings. Therefore, hashing techniques such as 

[34] and [27] are not applicable. However, in a finite 

automaton hashing schemes are employed as a loop 

transition. 

 

2.4 Character sets and wildcard repetitions.  

 In character sets and wildcard repetitions the 

various regular expression are compiled into a single 

DFA providing a memory blast in the size of DFA 

[5]. Thus it provides an additional complexity. 

Subsequently, hashing techniques cannot be applied 

to this problem and also a single DFA cannot be a 

possible solution. An obtainable solution is to group 

rules into multiple rules and form parallel DFAs [1]. 

This technique might reduce the consumption of 

memory but result in increased memory bandwidth. 

Precisely N number of DFAs depends on an N-fold 

growth in the memory bandwidth. NFA can be used 

as an alternative by exchanging off the utilization of 

memory with the requirements of memory 

bandwidth. 

  

2.5 Counting Constraints.   

 Counting constraints implies the combination 

of simple character repetition and character sets and 

wildcards repetitions. The upper bound of counting 

constraints might or might not be constrained. As 

seen in the above implications a simple character 

repetitions having a constrained upper bound has a 

potential to do an in-depth enumeration of the exact 

match strings. As mentioned in [1,5] a single regular 

expression when converted into NFA and then to 

DFA can prompt to exponential state blow up. DFA 

techniques are impractical to design with counting 

constraints. Thus the counting constraints with 

bounded repetition are desirable to replace with 

unbounded repetition. 

 

3. LITERATURE SURVEY 

 Deep packet inspection processes the 

complete packet payload and identifies a set of 

predefined patterns. In recent years, contemporary 

systems replace set of strings with regular 

expressions, because of their higher flexibility and 

expressive power. To make a pattern matching 

process fast and memory competent, many DFA 

compression techniques are carried out. In this 

section the merits and demerits of the various 

deterministic finite automata compression techniques 

and their performances are discussed. 

 

3.1 Deterministic Finite Automata (DFA) 

 A DFA consists of five tuples (Q, Σ, δ, q0, F) 

where Q represents the set of finite states, Σ denotes 

the finite set of input alphabets, δ the transition 

function which takes a state and an input character as 

parameters and returns a state, q0 denotes the start 

state and F represents the set of accepting states. In 

case of networking applications Σ contains 2
8
 

symbols from an extensive ASCII code. A primary 

characteristic of DFA is that only one state can be 

active at a time. It does not have multiple state 

transitions. 

 However it is infeasible to build a regular 

expression for the most repeatedly used rule set. 

Especially when the regular expression contains 

repeated wildcards it becomes difficult to build a 

DFA which contains a minimum number of states 

[24]. It takes only one main memory accesses per 

byte. 

 A hypothetical study was done and the worst 

case scenario [3] illustrated on the study shows that a 

single regular expression of size m is represented as a 

NFA with a complexity of O(m) states. The same 

expression when transformed into a DFA generates 

O(∑
m
) states. In a DFA the processing complexity for 

every input character is O(1) however when all the m 



states are active at the same time the complexity of 

NFA is O(m
2
). 

 Fang Yu et al, 2006 [1] proposed a DFA - 

based implementation called multiple DFAs 

(MDFA). It is an alternative DFA representing a set 

of regular expressions. The input string is compared 

against an MDFA by simulating every constituent 

DFA to determine whether there is a match or not. 

When compared with DFA, MDFAs are more 

compact because there is over a multiplicative raise 

in the number of states. Since all the elements of 

DFAs are matched against the input string the 

matching speed of MDFAs are slower than that of the 

DFAs. The regular expression matching speed of 

MDFA is about 50 to 700 instances higher than that 

of the NFA - based implementation [2] and they are 

mainly used in the Linux L7-filter [13], Bro [23] and 

Snort system [22]. On a DFA-based parser it achieves 

12- 42 times speedup. The speed of pattern matching 

is almost at a gigabit rates for certain pattern sets. 

 Todd J. Green et al, 2004 [16] constructed 

lazy DFA in which the finite states, finite inputs and 

state transitions are equivalent to NFA at runtime, but 

they cannot be considered the same at compile time. 

In the lazy DFA the states and transitions form a 

subset of the standard DFA and they are much 

smaller than that of the standard DFA. The 

drawbacks of this technique are it leads to a high 

warm-up cost and large memory consumption. 

 

3.2 Non Deterministic Finite Automata (NFA) 

 The working principle of NFA is same as 

DFA except that the transition function δ works by 

transiting to a new state from a state on an input 

alphabet. In a NFA multiple states can be 

simultaneously active at a time. The number of states 

in NFA that are essential to express a regular 

expression is equal to the number of alphabets that 

are required in the generation of regular expression. 

Therefore, Sidhu et al, 2004 [2] proposed a NFA 

based approach which improved the usage of 

memory. In NFA several states are active in parallel 

and it has multiple transitions thus it required 

multiple parallel operations in memory. At the same 

time all the states in NFA can be active which needs 

an excessive amount of memory bandwidth. 

 In [2], Sidhu et al, 2004 were the first to use 

the NFA to construct regular expressions for the 

given input string using FPGAs. To match a regular 

expression of size m, a serial machine requires O(2
m
) 

memory and requires the time complexity of O(1) per 

input character. However, the authors proposed a 

method that requires O(m
2
) space but process a 

character of text in O(1) time. Additionally, they 

presented a simple and fast algorithm that rapidly 

constructs the NFA for the given regular expression. 

To construct an NFA rapidly is crucial because the 

NFA structure depends upon the regular expression, 

which is known only at runtime. 

 Liu Yang et al, 2011 [17] developed a novel 

technique that employed Ordered Binary Decision 

Diagrams (OBDDs) in order to improve the time-

efficiency of NFAs. An OBDD is represented using 

arbitrary Boolean formulae. In order to increase the 

competence of state - space exploration algorithms 

[18] model checkers used OBDDs. NFA-OBDDs 

were evaluated with three sets of regular expression. 

The first set comprises of 1503 regular expressions 

which were obtained from the Snort HTTP signature 

rule set [10]. The next set contains 2612 regular 

expressions and the third set contains 98 regular 

expressions, which were found from the Snort HTTP 

and FTP signature rule sets. NFA-OBDDs are 

between 570x–1645x faster when compared with 

NFAs and uses almost the same amount of memory 

as that of NFA. NFA-OBDDs improved the 

efficiency of time of NFAs without conceding their 

efficiency of memory. 

 

3.3 Delayed Input DFA (D
2
FA) 

 Sailesh Kumar et al, 2006 [29] constructed 

D
2
FA by converting a DFA by means of 

incrementally substituting many state transitions with 

a single default transition. The D
2
FA is represented 

by a directed graph, whose nodes are termed as states 

and whose edges are termed as transitions. 

Transitions perform a move to a new state based on 

the present state and the character that is read from a 

finite set of input alphabet Σ. Each state has not more 

than one unlabeled active transition known as default 

transition. There is one start state and for each and 

every state, a set of matching patterns is defined. 

 The authors conducted test on the regular 

expression obtained from Cisco Systems, Snort rule 

sets [22] , Bro NIDS rule sets [23], and in the Linux 

layer-7 filter [13] application protocol classifier. 

From these regular expression sets, DFAs were 

constructed with a small number of states and the set 

splitting techniques proposed by Yu et al, 2005 in 

[31] were applied. The regular expressions were 

divided into different sets so that every set created a 

small DFA. Then from the Cisco regular expressions 

10 sets of rules were created and the footprints of 

total memory were reduced to 92 MB, with an 



aggregate of 180138 states, and lesser than 64K states 

were obtained from every individual DFA. Then the 

Linux layer-7 expressions were split into three sets, 

and it obtained a total of 28889 states. Further the 

Snort set consisted of 22 complex expressions ware 

split further into four sets and the state was 

unpredictable. The regular expressions found from 

Bro rule set were simple and efficient therefore they 

compiled all of them into a single automaton. 

 This approach drastically decreased the 

number of distinct transitions among states. For a set 

of regular expressions drawn from current business 

and academic systems, a D
2
FA representation 

reduced state transitions by more than 95%. For 

instance, using D
2
FA, the space requirements used in 

deep packet inspection appliances of Cisco Systems 

were reduced to less than 2 MB. Unluckily the use of 

default transition decreased throughput as there was 

no use of input in default transition and memory has 

to be accessed to retrieve the next state.  

 

3.4 Content Addressed Delayed Input DFA 

(CD
2
FA) 

 S Kumar et al, 2006 [4] designed the Content 

Addressed Delayed Input DFA (CD
2
FA), that 

matches the throughput of the conventional 

uncompressed DFAs. In a conventional 

uncompressed DFA implementation the numbers are 

represented as states and the characteristic 

information of the given state are found out using the 

number specified in the table entry. The main 

function of CD
2
FA is that the state identifiers are 

replaced with content labels which specify the small 

portion of data that are stored in the table entry. The 

default transition that matches the present input 

characters are skipped using content labels. The table 

entry for the next state are found out using content 

label by means of hashing techniques. 

 A CD
2
FA deals with the consecutive states of 

a D
2
FA utilizing the content labels. This process 

provides the chosen information that is available in 

the state traversal approach and avoids unnecessary 

memory accesses. The number of main memory 

accesses required by CD
2
FA is equal to those 

required by an uncompressed DFA. Because of the 

lower memory footprint and high cache hit rate the 

throughput of uncompressed DFAs is improved. With 

an unassuming 1 KB data cache, CD
2
FA attains two 

times higher throughput than that of an uncompressed 

DFA and in the meantime only 10% of the memory is 

needed by table compressed DFA. Subsequently, the 

regular expressions are implemented by CD
2
FA very 

economically and the throughput and scalability of 

the system is enhanced. 

 The effectiveness of a CD
2
FA is evaluated 

experimentally on the regular expression sets from 

Cisco Systems, which contains more than 750 

reasonably complex regular expressions in the Snort 

rule sets [22] and Bro NIDS rules sets [23], and in the 

Linux layer-7 [13] application protocol classifier. The 

authors created Cisco rules of ten sets with a total of 

180138 states, and the number of states of each DFA 

is less than 64000 states. Then the Linux expressions 

were split into three sets with a total of 28889 states. 

Snort rules were divided into four sets which contains 

22 regular expressions. Bro NIDS regular expressions 

were not divided because they are very simple. 

CD
2
FA constructed from the Creation Reduction 

Optimization (CRO) algorithm [4] achieved a 

memory reduction of around 2.5 to 20 times higher. 

The memory utilization reductions of CD
2
FA are 5 to 

60 times higher than that of an uncompressed DFA 

 

3.5 Hybrid Finite Automata (HFA) 

 M. Becchi and P. Crowley, 2007 [5] have 

introduced hybrid DFA-NFA state reduction solution. 

A hybrid DFA-NFA solution combines the strengths 

of NFA and DFA. When the automaton is 

constructed, NFA encoding is done on any node that 

contributes toward state blowup, while the rest of the 

states are converted into DFA nodes. The end result 

incorporates the memory utilization of NFA, and 

integrates the memory bandwidth requirements of a 

DFA. The size of the automaton is maintained by 

intruding the subset construction operation of NFA 

states that takes place when converting NFA to DFA 

and the growth causes state explosion. The critical 

states are easily determined by doing the above case.

 The subset construction operation is intruded 

with an intermediate state that results in a hybrid 

automaton which contains DFA-like states, NFA-like 

states which are not expanded and the border state. 

The border states are considered to be a part of both a 

DFA and an NFA. Some of the useful properties of 

Hybrid FA are that the DFA - state is the start state; 

the NFA part of the automaton remains inactive till a 

border state is reached; and there is no backward 

activation of the DFA coming from the NFA. 

 The key factor is that the hybrid finite 

automaton is the first automaton that evaluates all the 

types of regular expression found in Snort NIDS rule 

set [22] and is implemented efficiently in real-world 

rapid systems. The hybrid finite automata uses 

default transitions [31, 36] and content addressing [4] 



to encode the system and this leads to a variation in 

the storage requirements from 21KB up to 3MB. In 

reality, the default transition technique used in hybrid 

automaton eliminates approximately 98-99% of the 

DFA transitions, while the content addressing method 

implies the usage of state identifiers wide by 64 bit. 

 The main uniqueness of a hybrid finite 

automata are that it provides an unassuming memory 

storage requirement that is equivalent to a NFA 

solution, the memory bandwidth requirement of HFA 

in average case is also same as that of a single DFA 

solution, and in worst case it is linear containing dot-

star condition and counting constraints. 

 To balance memory and throughput, a new 

method Deep Classification – DFA (DC-DFA) was 

proposed by Wei et al, 2013 [14]. DC-DFA is a 

compact representation that is based on hybrid finite 

automata which combines the advantages of NFA 

and DFA. It is supported mainly for large scale 

regular expression matching. GradeOne classification 

approach is used to reduce the memory usage of DC-

DFA and uses deep classification approach to 

improve the throughput of DC-DFA. The 

experiments evaluated on DC-DFA shows that in 

case of very large state explosion, DC-DFA reduces 

DFA states by 75% and improves the utilization of 

memory more efficiently and maintains high system 

throughput. 

 

3.6 History Based Finite Automata (H-FA) 

 When multiple partially matching signatures 

are present in the DFA, the system becomes 

inefficient and yields to the state blow-up problem. 

To overcome this scenario the authors S Kumar et al, 

2007 [6] proposed an improved Finite State Machine. 

The approach builds a machine which retains a lot of 

information, and stores the data in a small and high-

speed cache memory known as history buffer [6]. 

This type of system is named as History-based Finite 

Automaton (H-FA) which reduces space up to 95%. 

 Every transition is associated with a 

condition that depends upon the associated action and 

state of the history which decides whether to insert or 

delete the state from the history set, or both. H-FA is 

thus represented as a 6-tuple H = (S, s0, Σ, A, δ, H), 

where S represents the finite set of states, s0 denotes 

the start state, Σ specifies the input alphabet, A 

represents the set of accept states, the transition 

function δ, and H represents the history. The 

transition function δ functions by taking in an input 

alphabet, a state, and a history state as its arguments 

and returns a new state and a new history state. 

 δ: S × Σ × H → S × H 

 The history buffer enhances the 

implementation of the H-FA and its automaton is 

similar to that of a DFA and contains set of states and 

transitions. For a single character there can be 

multiple transitions and leaves from a state but during 

execution only one of these transitions is taken, and 

that is resolved after investigating the details of the 

history buffer. 

 The performance was evaluated and 

experiments were conducted on the regular 

expressions used in the Cisco Systems. The rule sets 

from Cisco Systems contains over 750 reasonably 

complex regular expressions. The regular-expression 

signatures used in the open source Snort NIDS rule 

set [22] , Bro NIDS rule set [23], and in the Linux 

layer-7 [13] application protocol classifier were also 

considered. Linux layer-7 protocol classifier contains 

seventy rules and a Snort rule set contains more than 

1500 regular-expressions. The Bro NIDS contains 

648 regular-expressions and the results for the HTTP 

signatures were present. 

 The number of conditional transitions is very 

small and causes state blow-up. The outgoing 

transitions of a DFA are around 256 and in most of 

the H-FAs there are less than 500. Hence the number 

of transitions increases nearly by double and there is 

a decrease in the number of states and conversely 

there is a significant reduction in memory. The size 

of H-FA that is registered in history buffer depends 

upon the partial matches. But limitation of this 

approach is that it has a restricted number of 

transitions for each input character with a huge size 

of transition table and a slow inspection speed. 

 

3.7 History Based Counting Finite Automata (H-

cFA) 

 When there is a length restriction of l on a 

sub expression of a given regular expression, the 

number of states that is needed by the sub expression 

gets multiplied by l. S Kumar et al, 2007 [6] designed 

a machine called as H-cFA which can count such 

events thereby avoiding state explosion. 

 In H-cFA the length restriction is replaced 

with a closure and the closure is represented by a flag 

that is present in the history buffer. A counter is 

added for every flag in the history buffer. The flag is 

set by setting the counter to the length restriction rate 

by the conditional transitions while the flag is reset 

by resetting these transitions. Besides, the flag which 

is set are attached with the counter value 0 which 

denotes an additional condition. During the execution 



of the machine, for every input character the value of 

every single positive counter is decremented. 

 This basic change is to a great degree 

compelling in reducing the number of states, 

particularly when long length restrictions strings are 

present. H-cFA is exceptionally effective in 

implementation of the Snort signatures because it 

contains many long length restriction strings. It is 

very effective in reducing the memory consumption. 

If there is no use in the counting capability of H-cFA 

there is a massive memory blowup in the composite 

automaton for Snort prefixes. 

 

3.8 Extended Finite Automata (XFA) 

 Randy Smith et al, 2008 [7] designed a state 

based   Extended   Finite   Automata   (XFAs) which 

is augmented with a finite set of auxiliary variables in 

the standard DFA which is used to recollect different 

sorts of information that is relevant to the signature 

matching and to collect the explicit instructions that 

are attached to states in order to update these 

auxiliary variables. A state based extended finite 

automaton [7] is a 7-tuple (S, V, Σ, δ, U, (s0, v0), A), 

where 

• S represents the finite set of states, 

• Σ represents the set of input alphabets, 

• δ : S × Σ → S is the transition function, 

• V represents the finite set of variables, 

• U  :  S  × V  → V  is  the  update  function    

which describes how the data value is updated on 

states, 

• (s0, v0) is the initial configuration which 

represents a start state s0 and an initial variable value 

v0, 

• A → S × V is the set of accepting 

configurations. 

 XFAs is a simplified version of standard 

DFAs which includes a finite set of possible variable 

values and are attached to states that operates with 

the variable during matching. Variable values along 

with a state are generalized to each of the initial 

states, transient state and accept state. In particular, 

individual XFAs are constructed and they are 

combined by means of standard techniques. 

 Randy Smith et al, 2008 [10] have also 

proposed an edge based XFA. This work gives an 

informal categorization to the state blow up problem 

and is focused on algorithms to build XFAs from 

regular expressions. Semantically, edge based XFAs 

are equal to state-based XFAs, but a lot of states are 

required for state-based XFAs. Conversely, state 

based XFAs provide an efficient result for matching, 

combination and optimization algorithms. 

 For the test set Snort signature set were used 

which were obtained in March 2007. Randy Smith et 

al, 2008 [10] collected at different time interval live 

traffic traces at the edge of the network, and each 

trace contained HTTP packets between 17,000 and 

86,000. The performances were measured with the 

count of CPU cycles for each payload that are leveled 

to seconds per gigabyte (s/GB). The performance was 

evaluated by carrying the experiments on a standard 

Pentium 4 Linux workstation that runs at three GHz 

with three gigabyte of memory. The time complexity 

of Edge based XFAs is similar to DFAs and the space 

complexity is just like NFAs. When compared to 

DFA based system XFAs use 10 instances less 

memory and accomplish 20 instances higher 

matching speeds. 

 Michela Becchi et al, 2008 [19] proficiently 

handled counting constraints and back-references and 

proposed an advanced automation. This type of 

automaton covers all the patterns from the most 

expressive and popular Snort NIDS rule-set [22]. 

When the regular expressions are represented 

with counting constraints in DFA form there is a 

huge rise in memory space. When there is an increase 

in the number of repetitions it is infeasible to design 

DFA. To solve the issues in [19] the authors have 

introduced the idea of the counting automaton. The 

automaton designed with counting constraints aims to 

minimize the consumption of memory and bandwidth 

requirements. In particular, XFA size does not 

depend on the number of repetitions, the main 

memory access count that is required for each counter 

and does not depend on the number of active counter 

instances. The value of the induced alphabet becomes 

larger and secondly, there is an excessive increase in 

the size of the DFA. To solve this in [19] the authors 

have proposed Extended Hybrid FA which compiles 

several regular expressions into a single automaton. 

 The experimental results were evaluated on 

the Bro v0.9 rule set [23] and Snort [22] rule sets. 

First, they were able to compile a large number of 

complex regular expressions which contains simple 

regular expression with repeated character values, 

disjunctions of sub patterns, dot-star terms, and 

counting constraints and back references. Second, 

there was a decrease in the size of the NFA. Third, 

there was a reduction in the memory bandwidth in 

converted hybrid-FA representation and there was a 

need of an extra 156KB-16MB to hold the head- 

DFAs. The limited memory utilization makes a way 

to deploy the automata with static Random Access 



Memory (SRAM) in an Application Specific 

Integrated Circuit (ASIC) implementation that allows 

an excess memory access rate of 500MHz. 

 A XFA has used number of automata 

alterations to eliminate restricted transitions which is 

limitation of HFA. XFA is confined to single 

supplementary state for each regular expression and it 

is unsuitable for tricky regular expressions. 

 

3.9 Delta Finite Automata (δFA) 

 D Ficara et al, 2008 [8] proposed a 

compressed DFA called as Delta Finite Automata. 

The interpretations that were obtained from the above 

techniques are that most default transitions stay close 

to the start state and a state that is defined by its 

transition set represents the accepted rule and for a 

given input character most of the transitions are 

directed to the same state. Based on these 

interpretations the δFA was designed. 

 The last interpretations state that most states 

that are adjacent contribute a considerable portion of 

the same transitions and hence it is sufficient to store 

the difference between these adjacent states. 

Therefore a transition set of the current state is been 

preserved and stored in a table which represents the 

supplementary structure. The number of states and 

transitions used by the algorithm is reduced and the 

study shows that nearly all adjacent states share a few 

common transitions and it is sufficient to store only 

differences between them. Essential characteristic of 

the delta finite automata is that it required only a 

single state transition for each character, thus allowed 

a fast string matching. 

 In a δFA, an arbitrary number of transitions 

are obtainable and therefore each state does not have 

a stable size and consequently there is a necessity in 

state pointers, which are normally standard memory 

addresses. Char - State compression technique [8] 

based on input characters was proposed which 

exploited the relationship of few input characters 

with many states which reduced the number of bits 

required for each state pointer. This compression 

scheme has been included into the delta finite 

automata algorithm which provided a reduction in 

memory with an insignificant rise in the state lookup 

time. 

 Domenico Ficara et al, 2011 [20] proposed a 

compact representation that was an extension of the 

work [8] which deletes most of the neighboring states 

that share the common transitions and keeps only the 

different ones. Instead of specifying the transition set 

of a state concerning its direct parents, this 

requirement can be relaxed to obtain the adoption of 

1-step ancestors which increases the chances of 

compression.  The finest method to exploit the N
th
-

order dependence is to describe the state transitions 

among child and ancestors as impermanent. This, 

during the construction problem leads to NP-

Complete problem. Therefore, to make it simpler a 

direct and negligent approach is chosen. The real 

rule-sets result shows that the there is no much 

difference between the simple approach and from the 

optimal construction. This technique shares the same 

property of many other existing approaches and they 

are orthogonal to the various discussed existing 

algorithms such as XFAs [7] and H-cFA [6] and 

allows for higher compression rates. 

 

3.10 Second Order Delta Finite Automata 

(δ
2
FA) 

 δ
2
FA is an extended version of δFA. An as 

alternative of specifying the state transition set 

relating to its direct parents, there is an increased 

probability of compression with the acceptance of 2-

step ancestor’s. Before proceeding with the 

construction process of δ
2
FA [9] δFA has to be 

constructed and that value should be used as input. 

The subsets of nodes are considered in which a 

transition for a given character are defined 

temporarily.  

In a δ
2
FA the table lookup is not similar to that 

of δFA. The main difference between δ
2
FA and δFA 

is that there is an anxiety about the temporary 

transitions and the temporary transitions are not 

stored in the local transition set. Therefore, the 

lookup time complexity of δ
2
FA is almost same as 

that of a δFA and memory consumption is better than 

δFA. δ
2
FA takes advantage of the 2

nd
 order 

precedence among states and by implementing the 

concept of temporary transition it reduces the number 

of transitions. Only a single state transition per 

character is required by δ
2
FA thus it allows for fast 

string matching and higher compression rates. 

 

3.11 Dual Finite Automata (dual FA) 

 Cong Liu et al, 2013 [21] proposed a new 

approach called as dual finite automata (dual FA). 

The dual FA consists of an Extended Deterministic 

Finite Automaton (EDFA) and a Linear Finite 

Automaton (LFA). Dual FA consumes only a smaller 

memory when compared to DFA and the number of 

main memory access is very low when compared 

against the various discussed existing compressed 

DFAs. For instance it needs one or two main memory 



access for every byte in the payload. This is because 

by using linear finite automata the dual FA efficiently 

controls unbounded repetitions of wildcards and 

character sets.  

 This technique mitigates the state blow up 

problem. First, the NFA states that are not dependent 

to a large number of other states and those states that 

cause state exploitation are identified. Then, these 

NFA states are implemented using linear automaton. 

Subsequently the rest of the NFA states are compiled 

into a single extended DFA, which reduces the NFA 

states. Finally, by considering the fact that these two 

mechanisms cannot work separately, an interaction 

mechanism is implemented. EDFA has an additional 

feature compared with DFA to support the interaction 

mechanism. 

 The experimental results evaluated on dual 

finite automata demonstrate that LFA is very efficient 

in dropping the number of states and transitions. The 

number of states is reduced for up to four orders of 

magnitude when compared with that of DFA and the 

number of transitions is reduced for two orders of 

magnitude in contrast with MDFA [1]. In dual FA 

there is only a rare increase in the number of main 

memory accesses, but in a MDFA there is a rapid 

increase in the number of main memory accesses as 

the number of DFAs increases.  

 Lastly one of the limitations of dual FA is 

that the number of LFA states cannot be large. When 

the dual finite automaton is implemented in personal 

computer, the effects in large number of LFA states 

considerably have lot of computational overhead. 

When large number of LFA states is existed in dual 

FA a larger per-flow state occurs, the storage size of 

the transition table becomes large and memory 

bandwidth also becomes large. The dual FA offers an 

effective solution among memory storage and 

memory bandwidth, and the implementation becomes 

very easy. When compared with DFA and MDFA the 

simulation results shows that in dual FA there is a 

drastic decrease in the storage demand and the 

memory bandwidth is almost close to that of DFA. 

 

3.12 Deterministic Finite Automata with 

Extended Character Sets (DFA/EC) 

 Cong Liu et al, 2014 [11] have proposed a 

novel approach called Deterministic Finite Automata 

with Extended Character Sets(DFA/EC) which 

doubles the size of the character set [11,32] and 

considerably reduces the number of states. The 

DFA/EC can be efficiently implemented by dividing 

the design into two parts. The first part comprises of 

a compact DFA with a size m, which requires only 

one main memory access in its transition table for 

every byte in the packet payload. The second part 

consists of an efficient complementary program does 

not require any main memory access because it runs 

in the main memory without using the table lookup. 

 When compared with the above discussed 

existing compression techniques, the inspection speed 

of DFA/ EC is increased significantly by assigning 

the minimum value of one to the number of main 

memory accesses. The size of the inspection 

programs that are stored completely in the cache 

memory is kept small. Cong Liu et al, 2014 [11]  

conducted experimental results and the inspection 

program’s speed was deliberated with C++ and 

JAVA implementations in a Unix machine with 16 

Gigabyte of 1333 MHz DDR3 memory and with a 

2.66 GHz Intel Core i5 CPU. In both C++ and JAVA 

implementations DFA/EC showed the fastest results, 

and when compared with DFA, DFA/EC were over 

ten times faster and were two times faster than 

MDFA in Java implementation. Thus DFA/EC is 

efficiently implemented on ASIC hardware or GPUs 

with less cache memory and more computation 

resources. 

 The memory bandwidth requirement of 

DFA/EC is much lesser than MDFAs and is very 

close to DFA. When considering the rule-sets exploit-

19 and web-misc-28, DFA/EC can dramatically 

reduce the number of main memory accesses of DFA. 

When compared to DFA the number of states in a 

DFA/EC is about four orders of magnitude smaller 

and when compared to 2DFA it is around two orders 

of magnitude smaller than a 2DFA, and it is an order 

of magnitude smaller than a 4DFA, and is almost 

similar to that of an 8DFA. When compared to DFA 

the number of transitions of DFA/EC is almost four 

orders of magnitude smaller, when compared to 

2DFA is it around two orders of magnitude smaller, 

with that of 4DFA it is 3 times smaller and 8DFA is 

comparable to DFA/EC. 

 The experiments are evaluated with the Snort 

rule-sets and the results shows that DFA/ECs are very 

compact and achieve high inspection speed. 

Particularly, in best case the DFA/ECs are more than 

four orders of magnitude lesser than DFAs. When 

compared with DFA, DFA/ECs require significantly 

lesser memory bandwidth. A DFA/EC is theoretically 

modest, implementation and upgrading is made easy 

due to faster construction speed. 

 

 



4. DISCUSSIONS AND PROPOSED 

APPROACH 

 The various existing DFA compression 

techniques discussed in section 3 was analyzed to 

improve the memory consumption and to provide an 

efficient finite automata. The main reason that was 

analyzed from these existing DFA compression 

techniques for the number of states to get increased is 

due to the state explosion problem. The problem with 

exponential state explosion can be efficiently 

alleviated by grouping the regular expression. 

Grouping the regular expression falls into two cases. 

The first one is when the number of groups is known, 

the number of states in DFA can be minimized and 

second is when the maximum number of DFA states 

is known, the number of groups can be minimized 

[12]. Though total number of groups and total 

number of DFA states plays major criteria in 

minimizing the memory, only either of these two 

cases cannot be concentrated in minimization 

process. Minimizing the number of groups will lead 

to state explosion and minimizing only the number of 

states will end up with large number of subdivided 

group count. Therefore to analyze the performance of 

the regular expression grouping method both these 

cases should be equally focused in correspondent 

with the various practical demands. 

 Grouping the regular expression can be done 

by Intelligent Optimization Grouping Algorithms. To 

provide memory efficient deterministic finite 

automata, DFA compression techniques can be used 

along with the Intelligent Optimization Grouping 

Algorithms. Intelligent Optimization Grouping 

Algorithms such as Tabu Search (TS) [42], Simulated 

Annealing (SA) [41], Ant Colony Optimization 

(ACO) [12, 40], Swarm Intelligence (SI) [30] and 

Particle Swarm Optimization (PSO) [26, 30, 33] can 

be used effectively to solve the state blow-up 

problem by obtaining the overall most favorable 

distribution between the consumption of memory and 

number of groups. By recursively analyzing each 

feasible optimization outcome an exact optimum 

solution can be effortlessly acquired. 

   In Fig.1 the overall structure of the proposed 

approach which reduces DFA states by grouping the 

regular expression using the Intelligent Optimization 

Grouping Algorithms is shown. The payload files 

extracted from the rule sets such as Snort [22], Bro 

NIDS [23], and Linux L-7 filter [13] are used as 

input. The set of regular expressions are determined 

using packet payload files. Initially the parameters for 

the algorithms are assigned and the initial population 

is generated by randomly distributing the regular 

expression on the search space. The performance is 

evaluated according to the Intelligent Optimization 

Grouping Algorithms such as Simulated Annealing 

(SA) [41], Swarm Intelligence (SI) [30], Ant Colony 

Optimization (ACO) [12, 40], Particle Swarm 

Optimization (PSO) [26, 30, 33], Tabu Search [42], 

etc. Based on the performance the parameters such as 

search space, population, position, velocity etc are 

adjusted and the process is continued until the 

optimal groups are formed or until the maximum 

iteration is obtained. 

Once the optimal solution is obtained and the 

regular expressions are grouped, the finite state 

automata is designed based on the discussed existing 

DFA compression technique and is integrated with 

the DPI search engine to identify the packets that 

hold the viruses, unauthorized access and attacks 

such as TCP connection attacks, fragmentation 

attacks and application attacks. Intelligent 

Optimization Grouping Algorithms applied on the 

discussed existing DFA compression techniques for 

deep packet inspection will provide memory efficient 

automata with an improved network intrusion 

detection throughput through the use of DPI 

techniques and improved malicious packet detection.   

The experiments are evaluated in future on the 

proposed approach for the various performance 

metrics, and the expected outcome is compared with 

the various discussed existing DFA Compression 

techniques. Fig.2 shows the memory consumption, 

memory bandwidth, throughput and compression rate 

for the different DFA compression techniques. It 

depicts that the proposed approach will produce 

reduced memory consumption, better memory 

bandwidth, high throughput and better compression 

rate. 

 
Fig. 2. Memory Consumption, Memory Bandwidth,  

Throughput and Compression Rate for different DFA 

compression techniques



Fig. 1. Overall Structure of proposed approach 

 

Fig.3 illustrates the performance measures of 

the main memory access time and the time 

complexity for the various DFA compression 

techniques and shows that the proposed approach will 

produce increased number of memory access time per 

input byte and will improve the time complexity. 

 
 Fig. 3. Time Complexity and Main memory 

access time for different DFA compression techniques 

 

Fig. 4 shows the inspection speed of intrusion 

detection and the regular expression matching speed 

for the various DFA compression techniques. It 

illustrates that the proposed approach will produce 

fast matching speed and high inspection speed of 

intrusion detection. 
 

 
Fig. 4. Inspection Speed and Matching Speed for different 

DFA compression techniques 
 

Thus the future experiments evaluated on the 

proposed approach using Intelligent Optimization 

Grouping Algorithms will provide an optimally 

efficient automaton when compared with the 

discussed existing DFA compression techniques and 

will also improve the throughput of network intrusion 

detection through the use of DPI techniques and will 

enhance the malicious packet detection. 



5. CONCLUSION 
In this paper, the different compression 

representations for Deterministic Finite Automata 

such as NFA, DFA, MDFA, Lazy DFA, NFA- 

OBDD, HFA, H-FA, H-cFA, XFA, D
2
FA, CD

2
FA, 

δFA, δ
2
FA, Dual Finite Automata and DFA/EC are 

presented. MDFA increases the matching speed of 

the regular expression approximately to 50 to 700 

times above the NFA-based implementation and 

achieves the speedup of up to 12-42 times over a 

DFA-based parser. For all practical applications the 

size of the lazy DFA remains little but the limitation 

is that it leads to a high warm-up cost and large 

memory consumption. NFA-OBDDs improve the 

time efficiency of NFA. The memory storage 

requirement of HFA is comparable to those of an 

NFA; its memory bandwidth is similar to that of a 

DFA, but the regular expressions that contains 

counting and dot-star conditions consumes high 

memory. H-FA reduces space close to 95% but has a 

vast size of transition table and a slow inspection 

speed. On the other hand H-cFA is extremely 

efficient in implementing long length restriction 

signature patterns. XFAs matching speed is around 

20 times higher than a DFA and consumes 10 times 

lesser memory than DFA. The δFA substantially 

diminishes the number of transitions and number of 

states and needs only a single state transition for each 

character thus providing fast string matching. When 

compared to δFA, δ
2
FA provides an effective 

improvement in memory utilization and lookup 

speed. D
2
FA representation reduces the transitions 

between states by more than 95% and decreases the 

space requirements to less than 2 MB but the usage of 

default transitions decreases throughput. Memory 

reduction achieved by CD
2
FA is between 2.5 to 20 

times better when compared to a compressed DFA 

and 5 to 60 times higher when compared with 

uncompressed DFA. The number of main memory 

access of Dual FA is much quicker than the other 

existing techniques. When compared to other existing 

techniques DFA/EC tremendously increases the data 

packet inspection speed and provides only one main 

memory access. Each of the state compression 

techniques that were studied has certain strengths and 

limitations. Thus any one of these compact 

representation DFAs can be used along with 

Intelligent Optimization Grouping Algorithms to 

provide memory efficient deterministic finite 

automata that can be used for deep packet inspection. 
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