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Abstract: State estimation is a major problem in industrial 
systems. The accurate estimation of states leads to effective 
monitoring of system, fault diagnosis and good control 
performance. The particle filter is potentially suited for 
better estimation of highly nonlinear and non-Gaussian 
system. The selection of a suitable importance proposal 
density is a crucial step in the design of particle filter. The 
unscented Kalman filter (UKF) provides better state 
estimates for a nonlinear system than the well known 
extended Kalman filter (EKF). The particle filter using an 
UKF to generate proposal density is referred as unscented 
particle filter (UPF). The potential advantage of UPF is 
that the UKF allows the particle filter to incorporate the 
latest measurements in to a prior updating routine. This 
paper proposes an application of UPF in the field of 
electrical engineering, with special emphasis on highly 
nonlinear Van der Pol oscillator (VPO). Simulation tests 
were carried out on VPO system to assess the state 
estimation performance of the sampling importance 
resampling particle filter (SIR-PF) and UPF under various 
conditions such as initial state estimate mismatch, large 
measurement noise and model error. The results indicate 
that the UPF is highly robust and provides accurate 
estimation of states than the SIR-PF. 
 
Key words: Van der Pol oscillator, state estimation, particle 
filter, importance proposal density, unscented particle filter.  
 
1. Introduction 
 It is well known that the oscillator plays a vital role 
in the development of industrial electronics. An 
oscillator considered in this work is a nonlinear Van 
der Pol oscillator (VPO). The VPO is the keystone for 
studying systems with limit cycle oscillations due to its 
unique nature. It is also a widely used example in the 
literature because of its interesting behavior [1-3]. It 
can exhibit both stable limit cycle and unstable limit 
cycle depending on the direction of time [4]. In the 
recent years, many research works have been carried 
out related to the control of chaotic systems [5-8]. As 
the reported work on the VPO is extensive in the 
literature, only a very small part of it deals with the 
probabilistic aspects of this oscillator, i.e., the state 
estimation performance when the VPO is subjected to 
stochastic noises. 
 Over the last few decades, state estimation has been 
largely applied to many engineering problems for 
estimating the states of the dynamical system using a 
sequence of noisy measurements. Currently, the state 

estimation is becoming an important aspect in the field 
of electrical engineering also for fault diagnosis, 
control and performance monitoring applications [9-
11]. The Kalman filter (KF) is an optimal state 
estimator for linear dynamical systems subject to 
Gaussian noise [12,13]. Most of the practical systems 
by nature exhibit some degree of nonlinearity. One of 
the generalizations of the KF is the extended Kalman 
filter (EKF) which uses nonlinear models directly in 
order to estimate the states of a nonlinear system [14]. 
It adopts first order Taylor series expansion to provide 
a local linearization of the system around the operating 
point at each time instant [9]. Thus the EKF neither has 
a  proof of its convergence nor a proof that the 
resulting estimation satisfies optimality criteria [10]. 
The unscented Kalman filter (UKF) addresses the 
approximation issues of the EKF by deterministically 
choosing a minimal set of sample points and 
propagating it through the true nonlinear system in a 
simple and most effective way without making any 
linear approximations. Hence, the UKF can provide 
better state estimates than the EKF [15,16]. Like EKF, 
the UKF also assumes Gaussian posterior density but 
both these filters do not address non-Gaussian 
distributions. 
 In order to overcome the limitations of the Kalman 
filter- based estimators, the particle filter which can 
perform equally well for Gaussian and non-Gaussian 
distributions has been proposed for state estimation of 
a nonlinear system [17].  The importance proposal 
density is a vital design choice of the particle filter that 
will significantly affect its performance. In the 
sequential importance resampling particle filter (SIR-
PF), the transition prior is chosen as proposal density 
which does not make use of current measurement to 
propose new particles. So due to such weaker 
assumptions, the SIR-PF may become inefficient [18]. 
The UKF algorithm which does not involve analytical 
linearization and computation of Jacobians is used as 
proposal for the particle filter in this work to develop 
an efficient particle filtering algorithm known as 
unscented particle filter (UPF) [19]. Unlike SIR-PF, 
the UPF makes use of the measurement model and the 
information present in the current measurement to 
propose new particles [20-22]. 
 Many variants of particle filters have been 



 

 

developed in the recent years and applied to various 
fields of engineering [23-25]. There has, however, been 
a limited application of particle filters in the field of 
electrical engineering [24]. Kalman filter based 
estimators such as EKF and UKF for estimating the 
states of highly nonlinear Van der Pol oscillator (VPO) 
was reported in [2,26]. Sajeeb et al. [3] provides 
improvement over earlier works by using the particle 
filter for VPO. But in [3], a semi-analytical particle 
filter used for the state estimation problem of nonlinear 
VPO involves the complex analytical approximation 
approach in the particle filtering algorithm which is 
cumbersome. The work carried out in this paper 
addresses the above issue for the nonlinear oscillator by 
using the concept of (deterministic) sample statistics in 
the particle filter approach which is free from analytical 
calculations. As the deterministic sampling technique is 
used in the particle filter framework, the chances of 
error being introduced in the design of such filter for 
VPO can be very minimum. Therefore, this paper 
focuses on using the UPF for nonlinear state estimation 
of VPO and its estimation performance is evaluated in 
comparison with the sampling importance resampling 
particle filter (SIR-PF). The robustness of the UPF is 
also tested under different conditions such as initial 
state mismatch, large measurement noise and model 
error. 
 
2. Van der Pol Oscillator 
 The study of nonlinear oscillators has been 
important in the development of the theory of nonlinear 
dynamical systems [1]. Unlike linear oscillator, the 
nonlinear oscillator is structurally stable and the 
amplitude of oscillation is independent of initial 
conditions. Earlier, Van der Pol investigated electrical 
circuits employing vacuum tubes and found that they 
have stable oscillations and also constructed a circuit 
model of the human heart to study the range of stability 
of heart dynamics, which later came to be known as 
Van der Pol Oscillator [4]. The Van der Pol oscillator 
(VPO), an oscillator with nonlinear damping is a highly 
nonlinear system [27]. 
 In the harmonic oscillator, there is a continuum of 
periodic orbits but in the case of VPO, there is only one 
isolated periodic orbit which is called as limit cycle. A 
limit cycle is a closed trajectory in phase plane having 
the property that at least one other trajectory spirals in 
to it either as time approaches infinity or as time 
approaches negative infinity. The limit cycle is used to 
describe the perfect behavior of the VPO. If all the 
neighboring trajectories approach the limit cycle as 
time approaches infinity (forward time), it is called as 
stable limit cycle. Instead, if all the neighboring 
trajectories approach the limit cycle as time tends to 
negative infinity (reverse time) then it is called as 
unstable limit cycle [2]. 
 
2.1 Mathematical model of Van der Pol oscillator 

 The VPO for analyzing the nonlinear oscillations 
can be regarded as a RLC circuit with a negative-
nonlinear resistor which has the ability to pump energy 
in to the system or a parallel RLC circuit linked to a 
triode valve as the amplifier, with the anode current in 
the triode being a nonlinear function of the lumped 
voltage [1,27]. The dynamics of VPO in electrical 
circuits is governed by a second order nonlinear 
differential equation as  

2( 1) 0x x x x                                              (1) 

 
where x  is the position coordinate which is a function 
of time and   is a control parameter that reflects the 

degree of nonlinearity of the VPO system. For 
example, the system nonlinearity increases for increase 
in the value of  . The Van der Pol equation in (1) has 

become a staple model for most of the oscillatory 
processes in industries [26]. It can describe self-
sustained oscillations in the form of limit cycles. The 
system will enter in to a stable limit cycle for 

0  and an unstable limit cycle for 0  . This 

differential equation possesses a periodic solution that 
attracts other solution except the trivial one at the 
unique equilibrium point x  0x  . 

 The state equations of the VPO, with 1x x , 

2x x   in (1) are as follows: 

 

1 2 ,x x  

2

2 1 1 2( 1)x x x x                                          (2) 

The measurement equation is given as 

T

1 2[ ]y x x
                                                       

(3) 

 As the Van der Pol equation is commonly used to 
model the processes involving nonlinear oscillations, 
the studies on state estimation of VPO is generally 
carried out in the literature by considering its states 

as 1x , 2x
 
and the same is followed in this work [2,3,26]. 

A phase portrait is usually constructed to study the 
nature of the VPO system. This phase portrait depends 
on the selection of the value of  . The importance of 

the control parameter   in the VPO is further 

provided by considering the three cases as follows: 

 When 0  , there is no damping function and 

the system functions as the simple harmonic 
oscillator. 

 When 0  , the system will enter a stable 

limit cycle where energy continues to be 
conserved. 

 When 0  , the system will be damped and 

exhibit an unstable limit cycle. 
 



 

3. Particle Filter 
 The particle filter based on sequential Monte Carlo 
(SMC) method generates a large number of samples 
(particles) to approximate the posterior probability of 
the states [17]. If the state and measurement functions 
are nonlinear, and the process and measurement noises 
are non-Gaussian then the particle filter has the ability 
to give superior performance than the EKF and UKF 
[24]. For nonlinear systems, even when the process and 
measurement noise are initially assumed to be 
Gaussian, the distribution becomes non-Gaussian after 
they pass through the nonlinear dynamic system [21]. 
  The basic framework for the particle filter involves 
the state estimation of a stochastic nonlinear dynamic 
system given by (4) and (5), 

1 1 1( , , )k k k kx f x u v                                          (4) 

( , )k k ky g x n                                         (5) 

where k  is the time index, kx represents state of the 

system, ku signifies system input, ky  represents noisy 

measurement of the system, kv  and kn  are considered 

as process noise with covariance Q  and measurement 

noise with covariance R  respectively. It is assumed 

that the stochastic noises kv  and kn  are uncorrelated. 

The function (.)f and (.)g represents the nonlinear 

state and measurement functions respectively. 
 The main idea of particle filter is to approximate the 

required posterior probability density 1:( | )k kp x y
 
of 

the state kx
 
by a large number of random particles 

{ , 1,..., }i

k px i N
 

with associated weights 

{ , 1,..., }i

k pw i N  and to compute the state estimates 

based on these particles and weights [28]. pN  refers to 

the number of particles. The posterior probability 
density can then be approximated by the following 
empirical density function as 

1:

1

( | ) ( )
pN

i i

k k k k k

i

p x y w x x


                                  (6) 

where ( )x  is the Dirac delta function which is equal 

to unity if 0x  ; otherwise it is equal to zero. Hence, 
the vital step is to draw random particles from the 

posterior density 1:( | )k kp x y but since 1:( | )k kp x y
 
is 

not of the conventional form such as Gaussian pdf, it 
becomes impossible to draw particles. Therefore, the 
particle filter relies on importance sampling method 

and uses importance proposal density 1:( | )k kx y  and 

drawing particles from the proposal density would be 
equivalent to drawing particles from the posterior 
density [18]. So the selection of the proposal density 

1:( | )k kx y is one of the most critical design issue in 

the particle filter algorithm because the incorrectly 
chosen proposal density may result in poor filter 
estimation response [29].  

The SIR-PF uses the prior density (transition prior) 

1( | )i i

k kp x x   as proposal density and employs the 

resampling technique for eliminating the particles with 
smaller weight and creating copies of particles with 
higher weight, thereby, avoiding the degeneracy 
phenomenon [28]. The proposal density for such 
variant of particle filter is defined as 

1 1( | , ) ( | )i i i i

k k k k kx x y p x x                                     (7)  

The importance weights 
i

kw  for this choice of proposal 

is obtained as 

( | )i i

k k kw p y x ,                                            (8)       

and then the weights obtained from (8) are normalized 

to
i

kw  before the resampling stage. 

Thus in the SIR-PF, a new particle set is 
regenerated by sampling with replacement from the 

original set { , 1,..., }i

k px i N  with 

probability ( )j i i

k k kp x x w   . The index j  indicates 

the particle index after resampling [25]. Therefore, the 
resulting particles are considered as independent and 
identically distributed (i.i.d.) particles from an 
approximated discrete density function given in (6) and 
its corresponding normalized importance weights are 
assumed to be uniform which can be expressed as      

1i

k

p

w
N

                                          (9) 

Therefore, the estimated state ˆ
kx  using the SIR-PF is 

calculated as  

1

1
ˆ

pN

j

k k

jp

x x
N 

                                             (10) 

 
As the proposal density for the SIR-PF is 

independent of the current measurement ky , the states 

are estimated without any knowledge of the 
measurements. Hence, this filter becomes sensitive to 
outliers and can be inefficient because the assumptions 
made in this filter are very weak. Also the resampling 
step applied recursively at every iteration in the SIR 
filter can result in rapid loss of diversity in particles. 
An alternative approach is to use a special variant of 
the particle filter which involves the proposal density 
dependant on the most recent measurements [28]. 
Filters with such an importance density are generally 



 

 

known as local linearization particle filters. It involves 
the Kalman filter based estimators such as EKF or 
UKF as proposal [29]. The particle filter using EKF as 
proposal is referred as extended Kalman particle filter 
(EKPF). But the EKF may perform poorly for highly 
nonlinear systems [30,31]. It can also introduce an 
instability problem due to analytic local linearization 
approach which involves the computation of Jacobians. 
Therefore, the particle filter with proposal density 
generated by the EKF is not always reliable [19].  
 
4. Unscented Particle Filter 

A more reliable proposal density for the particle 
filter was proposed in [19]. The UKF used as proposal 
with in a particle filter framework is called the 
unscented particle filter (UPF). The UPF has the ability 
to solve the state estimation problem in a stochastic 
highly nonlinear system. The UPF proves to be more 
robust in estimating the states of a system under high 
plant-model mismatch [21]. 

The UKF uses the unscented transformation (UT) 
method to pick a minimal set of sample points called as 
sigma points around the mean. The UT forms the 
algorithmic core of the UKF and it is based on the 
principle that it is easier to approximate a Gaussian 
distribution than an arbitrary nonlinear function [15]. 
The UKF also referred as the so-called derivative free 
Kalman filter is accurate up to second order for any 
nonlinearity in estimating the mean and covariance of 
the states [16]. Therefore, the UKF has the potential of 
generating proposal density for the particle filter that 
matches the true posterior density more closely and 
also has the capability to control the approximation 
errors in the higher order moments of the proposal 
density, allowing for heavier tailed distributions than 
the EKF [19,21]. 

The idea of UPF is to use a separate UKF to 
generate a Gaussian proposal density and allowing 
each particle to propagate through it, i.e., 

1( | , )i i

k k kx x y  N ˆ( ; , )i i i

k k kx x P                              (11) 

where ˆ i

kx and i

kP  are the estimate of the mean and 

covariance of a particle respectively. The symbol N 
represents that the UKF assumes Gaussian distribution. 
In summary, the UPF algorithm for the time index k  is 
as follows [29]: 

a) For 1: pi N  

 Run UKF Algorithm (for each particle 
i ) 

ˆ[ , ]i i

k kx P UKF 1 1[ , , ]i i

k k kx P y   

 Draw a sample from the proposal 

density, i.e.
i

kx   N ˆ( ; , )i i i

k k kx x P  

 Calculate importance weight, 

1

1

( | ) ( | )

( | , )

i i i
i k k k k
k i i

k k k

p y x p x x
w

x x y




  

             End 

b) Normalize the importance weights  

c) Resample to get an updated particle 

set 1{ , } pNj j

k jx i  , where j  
refers to the index of 

the particle after resampling. 

d) For 1: pi N  

 Assign Covariance: 
jj i

k kP P  

             End 
 

 The output of the UPF algorithm is the mean ˆ
kx of 

the updated particle set which is computed as in (10). 
 
5. Simulation Results and Analysis 

Simulations of VPO system and its state estimation 
with SIR-PF and UPF have been carried out using 
MATLAB program in an open loop condition. It 
should also be noted that in order to know effectively 
the estimation performance of the filters, performance 
comparison of the SIR-PF and UPF is realized in a 
simulation environment by taking into consideration 
their estimation errors under the same test conditions. 
For example, the initial state estimate, initial state 
covariance, and process and measurement noise 
covariance are chosen to be the same for both the 
particle filters considered for estimation in this work. 
Unlike SIR filter, the UPF propagates the particles 
towards the likelihood function as a result of which 
very minimum number of particles can be considered 
in order to achieve better estimation performance [29]. 

Hence in this simulation study, the particle count pN  

is chosen as 150 for SIR-PF and only 15 for UPF 
which is about ten times lesser than the other. 
Simulations have been carried out for 250 sampling 
instances with a sampling interval of 0.1 sec. 

The root mean square error (RMSE) gives the 
measure of the estimation performance of the filters 
because it facilitates quantitative comparison. The 
RMSE values for a Monte Carlo run is defined as 

RMSE=  
1/2

2

1

1
ˆ

t

k k

k

x x
t 

 
 

 
        (12)                                                                            

where kx and ˆ
kx are true and estimated state at the time 

step k  respectively and t  indicates the total number of 
time steps. To further investigate the robustness of the 
UPF over SIR-PF to the random perturbations, 100 
Monte Carlo simulations are performed with different 
process and measurement noise realizations of same 
variance. Thus an average value of the calculated 



 

RMSE for each noise realization is taken as the 
performance index for filters. 
 
5.1 Design of particle filters for VPO system 

This section focuses on the equations and the 
parameters considered for the process and filters used 
in this work. The true states of the VPO system is 

computed at each sampling instant k by solving the 
state equation given in (13) using the ode solver 
function in MATLAB. 

1 2

2

2 1 1 2( 1)

x x

x x x x

   
   

     




                            (13)

 

   

 
As the VPO in this work is considered to be a 

stochastic nonlinear dynamic system, the random 
noises are assumed to be present in both the state and 
measurement equations of the true (actual) system. So 

the true state kx and the actual measurement ky  is 

represented as  

1

2

k k

x
x v

x

 
  
 

   

k k ky x n    (14)                                                               

where the states 1x  and 2x  in (14) indicates the states 

obtained at the instant 1k  . kv  is the zero mean white 

process noise with covariance Q  and kn  is the zero 

mean white measurement noise with covariance R . 
Both these noises are assumed to be independent of 
past and current state. The randn function in MATLAB 
is used to generate random values of order 2x1 for the 
process noise and measurement noise. The values of 

the initial state  
T

0 1 2x x x  and control 

parameter  
considered for each case of VPO is 

highlighted in the section 5.2 and section 5.3. 
The design of UKF forms the core in the 

development of the UPF for VPO system which is 
discussed here. Initially, random number of particles 

{ , 1,..., }i

k px i N are generated and then each particle 

is made to propagate through the UKF algorithm. As a 

result, the mean ˆ i

kx and covariance
i

kP  of the particle 
i

kx  is obtained from the UKF which is the proposal 

density in this particle filtering design [29]. The UKF 

algorithm for the time index k  and its design for VPO 
are as follows: 

Calculation of sigma points: 

The estimated state 1
ˆ

kx   
at the previous time index 

is augmented with the mean of the process noise kv  

and measurement noise kn  as 

T T T

1 1

T

ˆ [ ] [ ]a

k k k kx E v E nx  
      (15) 

In the unscented particle filtering framework, the mean 

of the thi particle at the previous instant, 
i

1
ˆ

kx   is 

augmented with the mean of the noises and so the 
above equation is modified as 

 
T

T
i

1 1 0 0 0 0ˆa

k kx x 
 
  

  (16) 

where the augmented term 1

a

kx   is of the order 6x1 in 

this work. The initial state estimate 0x̂  chosen for each 

case of VPO is shown in the sections below. 

Similarly, the covariance matrix 1

i

kP   of the 
thi particle is also augmented with the process noise 

covariance Q and measurement noise covariance R as 

1

1 0 0

0 0

0 0

a

i

k

k

P

QP

R





 
 

  
 
 

  (17)                                              

The values of covariance matrices P ,
 
Q

 
and R of the 

order 2x2 are shown in the following sections from 

which the augmented covariance matrix
aP  of the 

order 6x6 is calculated. 

Calculate 2 1L sigma points from the augmented 
state and covariance to form the sigma point matrix as 

 1 1 1 1( )a a a a

k k k kLx Px    
   
  

   (18) 

where  x v nL L L L    is the augmented state 

dimension and 
2 ( )L L      is a scaling 

parameter.  and  are tuning parameters. Choose 

0   to guarantee positive semi-definiteness of the 
covariance matrix.   is a factor determining the 
spread of sigma points around the mean. Choose 

0 1   and it should ideally be a small number to 
minimize higher order effects when the nonlinearities 
are strong.  

This filter design for the 2-dimensional VPO system 
considers the augmented state dimension 6L   from 

which 13 sigma points are calculated to form the sigma 
point matrix as in (18). The filter tuning parameters are 
chosen as 0.01  and 0  from which the scaling 

parameter   is computed. 
The sigma point matrix calculated in (18) can also 

be represented as 
   



 

 

1

1 1

1

x

k

a v

k k

n

k



 



 
 

  
 
 



 



  (19)                                                        

where the superscripts x , v  and n  refer to a partition 
conformal to the dimension of the state, process noise 
and measurement noise respectively. 

Time update equations: 

Transform the sigma points through the nonlinear 
system function, 

| 1 1 1( , )
k k

x x v

k kf
       (20)                                              

where the above nonlinear function f  is the state 

function of nonlinear VPO system given in (13). 
Calculate the prior estimate of the state and 

covariance as 

2

| 1 , |( 1

0

)
ˆ

L

k k i k k

i

i

mx W 



    (21) 

                                                   
2

T

| 1 ( ) , | 1 | 1 , | 1 | 1

0

ˆ ˆ[ ][ ]
L

i

k k c i k k k k i k k k k

i

P W x x    



      

  (22)                                                                                

The weights ( )

i

mW  and ( )

i

cW
 
are defined as 

( )

0 , 0mW i
L




 


                                                   

                                                                         

0 2

( ) (1 ), 0cW i
L


 


    


                             

                                                                              

(( ))

1
, 1,.., 2

2( )

i i

m cW W i L
L 

  


  (23) 

Choose the parameter 0  which is a non-

negative weighting term. The parameter   can be 

used to control the error in the kurtosis (higher order 
moments) which affects the heaviness of the tails of the 

posterior distribution. The value of 1   is chosen in 

this design. Then the selected filter tuning parameters 

are substituted in (23) to evaluate the weights ( )

i

mW  

and ( )

i

cW for the mean and covariance respectively. 

Measurement update equations: 

Transform the sigma points through the 
measurement function, 

| 1 1
( , )

k k k

x n

k g
 

     (24) 

                                                   

                                                        
 

where the above function g  is the measurement 

function of VPO system which is considered to be 
linear in this work. 

Calculate the predicted measurement and its 
covariance as 
                                                         

2

( ) ,

0

ˆ
L

i

k m i k

i

y W


     (25)

                                                  

2
T

( ) , ,

0

ˆ ˆ[ ][ ]
k k

L
i

c i

i

y k k i k kyP W y y


      (26)

                       

 

The state-measurement cross covariance matrix is 
calculated as  

2
T

( ) , | 1 | 1 ,

0

ˆ ˆ[ ][ ]
k k

L
i

y c i k k k k i k kx

i

P W x y 



      (27)     

The Kalman gain is given as 

1

k k k kx yy ykK PP    (28)                                                        

Therefore, the posterior estimates of the state and 
covariance is computed as 

| 1
ˆ ˆ ˆ( )k k k k k kx x K y y     (29)

                                          
 

T

| 1 k kk k k ky ykP KP P K    (30)
                                            

 

Hence, the mean ˆ i

kx and covariance
i

kP  of the 

particle 
i

kx  is calculated using UKF algorithm from 

(29) and (30) respectively. In the same 

manner, ˆ
kx and kP  are obtained for all the particles. 

Then the importance weight kw which depends on the 

likelihood function ( | )k kp y x is calculated for each 

particle. The likelihood function considered in this 
design is as follows: 

 
( )T 1 ( )

2

1 1
( | ) exp

2(2 ) det( )

i i i

k k k kp y x r R r
R

 
  

 

     (31)      

where 
( )i

kr is the prediction error based on the 
thi particle which corresponds to the difference between 

the actual measurement ky and predicted measurement 

ˆ
ky of the VPO system with 2-dimensional state vector 

and R is the measurement noise covariance. 

The importance weight 
i

kw is then normalized as  



 

1

p

i
i k
k N

i

k

i

w
w

w






  (32) 

The resampling technique is next carried out to 
select only the particles and its associated covariance 
with higher importance weight. Finally, average of 
these updated particles from this UPF algorithm is 
taken to obtain the state estimate of the VPO system at 
the instant k . The updated particles and its covariance 
matrices are used for the next sampling instant and the 
same procedure is recursively carried out for all the 
sampling instants. 
 
5.2 State estimation of VPO under stable limit cycle   
     using particle filters 
 In this section, the state estimates of a VPO system 
exhibiting stable limit cycle using the SIR-PF and UPF 
are compared and the filter responses are analysed 
under different conditions. 
 The stable limit cycle of the VPO system has the 
property that all trajectories in the vicinity of the limit 
cycle ultimately tend towards it as t  . In the case 
of stable limit cycle, any non-zero initial state 
converges to a stable limit cycle. The estimation 
performance of the UPF and SIR-PF are analysed 
below for different cases. 
 
Table 1  

State estimation performance of filter under different 
conditions for VPO system exhibiting stable limit cycle 

Conditions 

Average RMSE 

SIR-PF Estimates UPF Estimates 

1x̂  2x̂  1x̂  2x̂  

Normal 

system 

operating 

conditions 

 

0.3407 0.3935 0.0453 0.0411 

Initial state 

mismatch and 

model error 

 

0.5646 0.5296 0.0499 0.0489 

Initial state 

mismatch and 

large 

measurement 

noise 

 

1.0491 1.0977 0.2994 0.3067 

 
Case 1: Normal system operating conditions 
 In the first case, it is assumed that the states of the 
VPO system with stable limit cycle are estimated under 
the normal operating conditions in the absence of 
initial state and model parameter mismatch. The value 
of the control parameter   is chosen as 0.4. The initial 

state 0( )x  and the initial state estimate 0
ˆ( )x  are chosen 

as  
T

1.2 0 . The initial state covariance ( )P , process 

noise covariance ( )Q  and measurement noise 

covariance ( )R  are chosen as 
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2
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R
 
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 

                                            (33)  
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Fig. 1. Evolution of true and estimated states of VPO in   
            forward time using SIR-PF and UPF under normal    
           operating conditions. 
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Fig. 2. Phase portrait of SIR-PF estimates under normal   
           operating conditions for VPO exhibiting stable   

           limit cycle. 
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Fig. 3. Phase portrait of UPF estimates under normal  
           operating conditions for VPO exhibiting stable   
           limit cycle. 
 
 The true and estimated states using the UPF and 
SIR-PF are shown in Fig. 1. The UPF estimates tracks 
closely the true state trajectory as compared to that of 
SIR-PF. The reason is that the prior density considered 
as proposal density in the SIR-PF does not allow the 
particles in the prior to move to the regions of high 
likelihood.The phase portrait of SIR-PF and UPF 
estimates representing the closed trajectory of the VPO 
system in the phase plane are shown in Figs. 2 and 3 
respectively. The phase portraits of the UPF depicts 
that this filter response very closely follows the 
trajectory of the true system subjected to noise. The 
average RMSE values of both the filter estimates under 
normal operating conditions are listed in the first row 
of Table 1. 
 
Case 2: Initial state and model parameter mismatch 
 The second case is considered to evaluate the 
robustness of the UPF over SIR-PF under the presence 
of model error and initial state estimate mismatch. In 
the true system and the state estimator model, the value 
of   is chosen as 0.4 and 0.6 respectively to introduce 

model error. The initial state is chosen 

as  
T

0 1.2 0x  . The initial state estimate 0
ˆ( )x , initial 

state covariance ( )P , process noise covariance ( )Q  and 

measurement noise covariance ( )R  are chosen as 

 
T

0
ˆ 0 3x  , 

0

2 0

0 2
P

 
  
 

,   
2

1 0
(0.05)

0 1
Q

 
  

     

and 

2
1 0

(0.05)
0 1

R
 

  
 

                                            (34) 

The choice of 0P  is reasonable here as the initial state 

estimate is far from the true initial state. 
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Fig. 4. Evolution of true and estimated states of VPO in   
           forward time using SIR-PF and UPF with large   

           initial state mismatch and model error. 

 
 It is observed from Fig. 4 that when there is a 
significant model error and large initial state mismatch, 
the UPF is more robust and thereby, giving 
significantly better estimation results but the SIR-PF 
estimates are not able to converge to the true states. 
The phase portrait of SIR-PF and UPF estimates in the 
presence of initial state mismatch and model error are 
shown in Figs. 5 and 6 respectively. The average 
RMSE values calculated for this case are listed in the 
second row of Table 1. 
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Fig. 5. Phase portrait of SIR-PF estimates with large    
            initial state mismatch and model error for VPO   
            exhibiting stable limit cycle. 
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Fig. 6. Phase portrait of UPF estimates with large initial  
           state mismatch and model error for VPO exhibiting   
           stable limit cycle. 
 

Case 3: Initial state mismatch and large 
measurement noise 
 The filter responses under the assumption of initial 
state mismatch and large measurement noise are 
discussed here. The parameter   for both the system 

and the state estimator model is chosen as 0.4. The 

initial state is chosen as  
T

0 1.2 0x  . The initial 

state estimate 0
ˆ( )x , initial state covariance ( )P , process 

noise covariance ( )Q  and measurement noise 

covariance ( )R   are chosen as 

 
T

0
ˆ 0 3x  , 

0

2 0

0 2
P

 
  
 
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2

1 0
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0 1
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 
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     

and 

 

2
1 0
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0 1
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  
 

                                              (35) 

 
 It is reasonable to assume higher value of 
measurement noise covariance for both the filters as 
this case deals with large measurement noise. The 
interesting finding from Fig. 7 is that in spite of 
considering large measurement noise and initial state 
vector mismatch, the UPF estimates converge to the 
true states and follow its trajectory, whereas the SIR-PF 
estimates could not converge to the true states as the 
estimates are obtained at each time instant without any 
knowledge of the measurements.The phase portrait of 
SIR-PF and UPF estimates subjected to large 
measurement noise covariance are shown in Figs. 8 and 
9 respectively. The average RMSE values obtained for 
this condition are listed in third row of Table 1. 
 

 

 

0 50 100 150 200 250
-3

-2

-1

0

1

2

3

Sampling Instants

S
ta

te
  

x
1

 

 

True

SIR-PF

UPF

0 50 100 150 200 250
-3

-2

-1

0

1

2

3

Sampling Instants

S
ta

te
  

x
2

 

 

True

SIR-PF

UPF

 
Fig. 7. Evolution of true and estimated states of VPO in   
           forward time using SIR-PF and UPF with large initial  
           state mismatch and measurement noise. 
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 Fig. 8. Phase portrait of SIR-PF estimates with large 
                 initial state mismatch and measurement noise for   
                VPO exhibiting stable limit cycle. 
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 Fig. 9. Phase portrait of UPF estimates with large initial 
              state mismatch and measurement noise for VPO   
              exhibiting stable limit cycle. 



 

 

5.3 State estimation of VPO under unstable limit 
cycle using particle filters  
 The unstable limit cycle of the VPO system has the 
property that all trajectories starting from points 
arbitrarily close to the limit cycle tend away from it as 
t  . In the case of an unstable limit cycle, if the 
initial state is inside the limit cycle, it converges to zero 
as time progresses. But instead, if the initial state is 
outside the limit cycle, it diverges. 

Initially, the simulation study has been carried out to 
understand the behaviour of VPO system exhibiting 
unstable limit cycle in the absence of process and 
measurement noise. First, let us consider the initial 

state as  
T

0 0.7 0x  which is well inside the limit 

cycle and 0.3   . Fig. 10 shows that both the states 

of the system converge to zero as time progresses for 
the above assumed initial state. The phase portrait of 
the system under states converging condition is shown 
in Fig. 11. 
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Fig. 10. Response of VPO in reverse time with an initial   

             state inside the limit cycle. 
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Fig. 11. Phase portrait of VPO exhibiting unstable limit      

             cycle with an initial state inside the limit cycle. 
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Fig. 12. Response of VPO in reverse time with an initial   

             state outside the limit cycle. 

 
On the other hand, consider the initial state as 

 
T

0 0 2.5x   which is outside the limit cycle and 

the parameter 0.3   . It can be observed in Fig. 12 

that the states of the system diverge for the above 
assumed initial state and the phase portrait of the 
system under diverging conditions is shown in Fig. 13. 
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Fig. 13. Phase portrait of VPO exhibiting unstable limit   

             cycle with an initial state outside the limit cycle. 

 

The state estimation performance of UPF and SIR-
PF for a VPO system with unstable limit cycle in the 
presence of stochastic process and measurement noise 
are analysed below for different conditions. 
 
Case 1: Normal system operating conditions 
 The states of the system are estimated in this case 
without the initial state vector mismatch and model 
error. The value of the parameter   is chosen as 

0.3 . The initial state 0( )x  and the initial state 

estimate 0
ˆ( )x  are chosen as  

T
0.7 0  which is inside 

the limit cycle. The initial state covariance ( )P , 

process noise covariance ( )Q  and measurement noise 

covariance ( )R  are chosen as 
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                                            (36) 

  
 It is inferred from Fig. 14 that the UPF estimates 
captures the trajectory of the true states more closely 
than the SIR-PF estimates which does not converge to 
the true state as time progresses. 
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Fig. 14. Estimation performance of SIR-PF and UPF with an 
              initial state estimate inside the limit cycle for VPO  
             in reverse time. 

 
Case 2: Initial state and model parameter mismatch 
 In the second case, the parameter   

for the system 

and the state estimator model is chosen as 0.3  and 

0.5  respectively and thereby, introducing model 
parameter mismatch. The initial state is chosen 

as  
T

0 0.7 0x   which is inside the limit cycle. The 

initial state estimate is chosen as  
T

0
ˆ 0 2.5x   which 

is outside the limit cycle. 
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Fig. 15. Estimation performance of SIR-PF and UPF with an 

              initial state estimate far from the limit cycle and      

            with model error for VPO in reverse time. 

 

 The initial state covariance ( )P , process noise 

covariance ( )Q  and measurement noise covariance ( )R  

are chosen as 
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 Fig. 15 illustrates that the UPF attains the superior 
estimation results than the SIR-PF which results in 
large estimation error. It is also clear from Fig. 15 that 
the SIR filter estimates are more sensitive to the model 
error but the UPF provides higher degree of robustness 
to the model error. It is also noted that under high 
initial state mismatch, the UPF estimates converge at a 
faster rate as its state covariance decreases faster. 
 
Case 3: Initial state mismatch and large 
measurement noise 
 It is assumed under this condition that for the 
system and estimator model, the value of   is chosen 

as 0.3 . The initial state is chosen as  
T

0 0.7 0x   

which is inside the limit cycle. The initial state estimate 

is chosen as  
T

0
ˆ 0 2.5x   which is outside the limit 

cycle.  
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 Fig. 16. Estimation performance of SIR-PF and UPF with    
              an initial state estimate far from the limit cycle and 
               with large measurement noise for VPO in               
              reverse time. 
 

 The initial state covariance ( )P , process noise 

covariance ( )Q  and measurement noise covariance 

( )R  are chosen as 
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 It is observed from Fig. 16 that the UPF is much 
better in handling both initial state mismatch and large 
measurement noise and hence, achieves better state 
estimates than the SIR-PF. It also shows that the SIR 
filter is unable to track the true state as its particles are 
not able to lie in the region of the true state.  
 

Table 2  

State estimation performance of filter under different 
conditions for VPO exhibiting unstable limit cycle 

Conditions 

Average RMSE 

SIR-PF Estimates UPF Estimates 

1x̂  2x̂  1x̂  2x̂  

Normal 

system 

operating 

conditions 

 

0.3701 0.3594 0.0471 0.0475 

Initial state 

mismatch and 

model error 

 

0.7776 0.8006 0.0481 0.0530 

Initial state 

mismatch and 

large 

measurement 

noise 

 

0.5619 0.5854 0.1018 0.0963 

 
 The average RMSE values of the UPF and SIR-PF 
estimates under the above three conditions for VPO 
system exhibiting unstable limit cycle are listed in 
Table 2 to assess the estimation performance. 
 
 
6. Conclusion 
 This paper has demonstrated the effectiveness of the 
UPF for estimating the states of a highly nonlinear Van 
der Pol oscillator (VPO) and the results are compared 
with the SIR-PF. It is found through simulation studies 
that the UKF is better suited as proposal density in the 
particle filter because it incorporates the latest 
measurements before the evaluation of importance 



 

weights. Hence, this UKF proposal allows the particles 
to move towards the high likelihood region. Even 
though the UKF which assumes Gaussian distribution 
is used for generating the proposal, the UPF serves to 
bring the particles closer to the true state and retains its 
ability to estimate non-Gaussian state distributions.  
 From the results, it can be inferred that the UPF 
outperforms the SIR-PF under normal system operating 
conditions, high initial state mismatch and large 
measurement noise. The UPF proves to be more robust 
to the error induced in the state estimator model of 
VPO. The filter performances are also evaluated for 
this nonlinear oscillator by calculating the RMSE 
values under different operating conditions. Hence, it is 
found that UPF can be the good choice for VPO 
because of its ability to provide more accurate 
estimation of states.  
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