
  
 
Abstract — The field oriented control emerged as an 
important approach for the control of AC machines, and 
continues to be explored and developed in the literature. The 
estimation of the rotor flux from the measurable variables 
was the only method used to implement the vector control of 
the induction machine. To replace the estimator based on the 
mathematical model of the system, which can lead to 
unintended errors due to uncertainties on the model and on 
the measures we use an appropriate observer. 
 

Keywords — Induction machine, vector control, sliding 
mode control, nonlinear observer. 
 

I. INTRODUCTION 
HE field orientation technique namely the Rotor flux 
orientation introduced by BLASCHKE in 1972, has 

made it possible to act independently on the rotor flux and 
the electromagnetic torque which gives us an induction 
machine as good in the areas of variable speed drive as a 
DC machine, but the aimed decoupling can not be insured 
in steady states when the rotor flux amplitude is kept 
constant, which presents a serious constraint especially for 
rotating machines at high speeds ( higher than the nominal 
speed) [1]. 
 
    A Nonlinear control is often necessary for best 
performance. The sliding mode control is a technique that 
works as well with the linear systems as with nonlinear 
systems. This technique has two stages: Forcing the 
variable control of the system to reach an hyper-surface as 
quickly as possible, then slides until it reaches a certain 
point, during its second phase, the system is in a sliding 
state and its dynamic behaviour is independent of system 
parameters, as well as disturbances, and therefore 
insensitive to parameter variations. 
 
    Whatever the technique used (classical or sliding mode 
control) knowledge of the values of state variables is 
required.  
 
    The use of sensors causes the congestion of the 
installation and creates fragility and disability of precision. 
Faced with these problems, we use a sliding mode 
observer. 

 
 

II. INDUCTION MOTOR MODEL 
The model of the induction machine can be presented in 
the following state variable form [1]: 
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Rs and Rr: the stator and rotor resistances. 
ωg: the sliding of the angular speed. 
 
The electromagnetic torque can be expressed by: 
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where p is the number of pair poles. 
 

III. FIELD ORIENTED CONTROL PRINCIPLE 

    In the induction machine, the principle of orientation is 
to align the rotor flux on the direct axis of Park’s axes, see 
figure 1. 
 
 
 
 
 
 
 

 
 

Fig. 1  Rotor flux orientation basic. 
So:     φdr = φr      ; φqr = 0 
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We want to reach the following law [2]: 
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After Laplace transform, we can write: 
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    To control the dynamics of the machine, knowledge of 
the position and the amplitude of the rotor flux is required. 
To obtain this information, we often use the model of the 
machine. A simple approach is to integrate the simplified 
rotor model equations as follows:  
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    To avoid the coupling between the two equations, we 
use a static method of compensation. This method is 
concerned with the regulation of currents while neglecting 
the coupling terms. These are added to the output of the 
current correctors to obtain the reference voltages needed 
for the control. 
    The additional terms are determined so that the voltages 
are first-order relationship with the correspondent current. 
The voltage at the regulators output are given by [3]: 
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The compensation voltage is given by: 

                   

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

−=

    

2

qsssrs
r

mc
qs

dsssr
r

rmc
ds

IL
L
LV

ILs
L

RLV

ωσφω

ωσφ
 (6) 

In considering the steady state, the 
r

r

rm s
L

RL φ2
 term is 

eliminated, thus we obtain the reference voltage that is 
necessary for the control: 
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    We use PI regulators where dimensioned correction is 
made with the principle of poles placement. Figure 2 
presents the main blocs of the direct field oriented 
control [4]. 
 
Simulation results 
    The simulation is achieved using MATLAB 
/SIMULINK. Figure 3 shows the orientation of the rotor 
flux by the direct method using a PWM inverter fed 
induction machine with the application of a 10 N.m load 
between t1= 0.5s and t2= 1.0s. We then apply a change of 
speed reference to -200 rad/s at t3=1.5s. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2  The direct field oriented control principle. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 3 Simulation results of the direct field oriented control. 
 
In reference to these results we can concluded that:  
- the decoupling is obtained between the rotor flux and the 
electromagnetic torque. 
- the rotor fluxes ( qrdr φφ  , ) and the electromagnetic 
torque are maintained to their desired values, implying a 
good decoupling. 
 
The use of PI regulator structure for the control of the 
speed induction machine has not yielded satisfactory 
results regarding the imposed disturbances. So it’s 
necessary to introduce more powerful regulators, which 
are based on algorithms of modern techniques. 
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IV. SLIDING MODE CONTROL OF INDUCTION MACHINE 

    Two sliding surfaces are chosen giving the size of the 
command vector U, represented by voltage Vds and Vqs, 
Figure 4, The variables to be resolved are the speed and 
the flux φr [1 ], [2], [5]. 
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With: e (ω) = ω* - ω and: e (φ) = φ*

r - φr 
The spins off surfaces are deduced as follows: 
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According to the equation machine system we shall have: 
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During the sliding mode, the derivatives have a zero value, 
which gives the equivalent commands Vdseq and Vqseq: 
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Fig. 4  Speed drive by the sliding mode control. 

 

To check the condition of existence, we must put: 
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In general, the value of command is: 

U = Ueq + Un 
 
Simulation results and robustness tests 
    To illustrate the performance of the sliding mode 
control, Figure 5, we first simulate the machine at no load, 
for a rotor resistance variation Rr of +100%. We then 
apply a 10 N.m load between t1=0,5s and t2=1s. The 
machine is also subjected to an application of the 
command value between 200 and -200 (rad/s) at t3=1,5s. 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5  Simulation results of speed drive by the sliding mode 

control. 
 
    It can be seen that the sliding mode control gives better 
performances regarding the continuation of the reference 
and the rejection of disturbances. 
 
    On the other hand, the robustness tests clearly show the 
effect of a misidentification of rotor parameters on the 
orientation of the rotor flux. This effect is primarily due to 
the error in the estimation of the rotor flux. 
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V. SLIDING MODE CONTROL WITH A NONLINEAR OBSERVER 
 

    The main idea of the observer is to find the best 
estimation of variables defining the state of the system 
from its inputs and outputs. For the estimated model, the 
observer has correction terms, which aim at minimizing 
the estimated error and accelerating the convergence to 
zero for this error. 
 
A. Structure of a sliding mode observer 

Consider the following non-linear system [2]: 

                          ),,( tuxfx =&                                     (10)  
Consider also the vector y of the measurable variables 
which are connected linearly with the state variables:                               
                          y C x= ⋅                                            (11)       
If the system is an observable one, we define the observer 
by the following structure:                                                     
                   sAutuxfx += ),,ˆ(&̂                                (12) 

with $x  having the same size as x (n). f̂  being the 
estimation. A is the gain matrix with dimension (n x r)      
(r being the dimension of u).  us is a vector defined by:  
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Γ : is a square matrix (r x r) to be determined. 

We also set the vector error $e x x= −  by subtracting (12) 
from (10), and we get: 

            sAufe −Δ=&                                     (14)                                            

with      ),,,ˆ(),,( tuyxftuxff −=Δ  

The vector surface S = 0 is attractive if: 
               0<ii SS &     for:   i = 1,r                                (15)                                 
    During the sliding mode, the switching term (13) is 
equal to zero because the vector surface and its derivative 
will be zero ( 0≡≡ SS & ). The equivalent value of the 
switching term is given as follows:  
                     0)~( =−ΔΓ suAfC                                (16)  

where           fCCAus ΔΓΓ= −1)(~                                (17)                          
The matrix ΓCA must be invertible. This will constitute 
the first requirement for the choice of A and Γ. The error 
dynamic is governed by the following equation:  
                     fCCAAe ΔΓΓ−= − ))(1( 1&                     (18) 

The choice of matrix Γ and A and the model f̂  is 
therefore decisive to ensure the convergence of the error 
to zero. 
B. Rotor flux sliding mode observer  

    The main purpose of the observer is to estimate the 
rotor fluxes φdr and φqr and the stator currents knowing the 
stator currents and voltages measurement, and the speed 
value. The output vector used for the estimation is given 
by [1]: 

                 1 0 0 0 0
0 1 0 0 0

y C x x⎛ ⎞
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    Consider now the induction motor system taking into 
account the variables qrdrqsds ii φφ  and  , , . The variables to 

be observed are qrdrqsds ii φφ ˆ and ˆ ,ˆ ,ˆ . We give also the 
system’s model to be observed and the observer’s model. 
 
The system to be observed is: 
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The observer’s model is: 
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Simulation results and robustness tests 
    We simulate the behavior of the observer by using 
Figure 6, for a variation of Rr by +50% at t1=1s and for 
100% at t2=2s with the application of a load and the 
command value between 200 and -200 (rad/s) at time 
t3=1,5s. We notice in Figure 7, that the regulation system 
with sliding mode observer shows a highly satisfactory 
performance regarding the convergence of the error to 
zero. 



 

  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Speed drive with a sliding mode observer. 
 

VI. CONCLUSION 

    In this paper, we discussed the field oriented control 
technique of the rotor flux. This method makes it possible 
to decouple the flux control from that of the torque. 
    The PI regulator does not allow full control of the 
transient state. To correct this, we proposed the use of 
sliding mode control with non-linear switching surface; its 
algorithm has been synthesized from the nonlinear model 
by means of vector control. 
 
    We carried out tests that take into account the effect of 
the variation of different parameters of the machine. We 
found that speed control remains robust regarding to these 
variations, but it loses the decoupling possibility. This 
effect is primarily due to the error in the estimation of the 
rotor flux. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    To solve these problems, we have proposed the 
replacement of the estimator by an observer whose role is 
to minimize the error about parametric variations. For this 
purpose, we have adopted an observer with derivatives 
corrective terms for variable system structure (sliding 
mode observer). This observer allows a good estimation of 
the rotor flux. However, it is very sensitive to the 
variations of the rotor resistance and inductance. 
 
    So, to have a high performance drive, it is proposed to 
continue this study for an on-line identification (real time) 
for the rotor parameters. 
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Fig.7 Simulation results of the speed drive with a sliding mode observer. 


