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Abstract: In this paper, analysis of fractional order passive RC low-pass and high pass filter 
circuits is presented. The time-domain expressions for different values of fractional order,α  
were calculated using laplace transform approach. The effect of fractional order on frequency 
response is studied. It has been observed that the second order characteristics can be obtained 
from a fractional circuit of order between 1 and 2. 
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1. Introduction: Fractional calculus is a very 
old topic [1]. It deals with the generalization 
of differentiation and integration to an 
arbitrary order. Now a day’s attention is drawn 
towards the use of fractional calculus in the 
fields of control systems, signal processing, 
electric circuits, Electromagnetics etc. The 
fractional integration of thα  order of the 
function )(tf is defined as [2], 
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The Laplace Transform of the fractional 
Integral is[2], 
  L )()}({ SFStfJ αα −=         (2) 
where )(SF   is the Laplace transform of 

)(tf .The Riemann-Liouville Fractional 
differentiation of the function )(tf of order 

)0( >αα   is defined as[2], 
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where )(xΓ  represents the gamma 
function of x .The Laplace transform of 
the fractional derivative is, 
L )()}({ SFStfD αα =                    (4) 
Mittag-Leffler function: The Mittag-Leffler 
function plays an important role in the solution 
of fractional order differential equations. The  
 

 
Mittag-Leffler function (1903) is defined as 
[2], 
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exponential function, when the value of 
1=α .So xexE =)(1 [7].The above function 

defined in eqn. (5) is generalized by wiman 
(1905) as [5-7],  
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The corresponding Laplace transform pair is 
[12],  
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,1== βαIf  then the Mittag-Leffler 
function defined in eqn. (6) will become an 
exponential function, xexE =)(1,1      (9) 

x
e

xEWhen
x 1

)(,2,1 2,1
−=== βα        (10) 

xexEFor === )(,1,2 1,2βα                (11) 

x
x

xEFor
)sinh(

)(,2,2 2,2 === βα          (12) 



 2 

23,1
1

)(,3,1
x
xe

xEFor
x −−=== βα          (13) 

A fractional order capacitor is one which is 
defined by the following equation,[4] 
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 where  α is the fractional order. A fractional 
order circuit is one which contains at least one 
fractional order capacitor and is defined by a 
fractional order differential equation. The 
significant advantage of fractional order 
circuits compared to integer order circuits is 
that they are characterized by memory. 
Fractional order systems are characterized by 
infinite memory, whereas it is finite for an 
integer order system. 

In this paper, the transfer functions of 
fractional order RC circuits are derived, then 
time and frequency domain analysis is carried 
out in section2.Numerical simulations and 
conclusions are presented in section3. 
2. Fractional order Circuits: The following 
are the fractional order low-pass and high-pass 
filter circuits. 
2.1 Fractional order low pass filter 
The circuit diagram for the single stage 
fractional order low pass filter is shown in 
Fig.1. 

 
Fig.1. Fractional order low pass filter 
The characteristic equation for the circuit is, 
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Taking Laplace transform, the transfer 
function of the circuit is  
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Where ατ
RC

1=  is a constant. 

The impulse response is found to be, 
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The step response is calculated as, 
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 The magnitude and phase of the transfer 
function are,  
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 2.2 Fractional order High pass filter 
The circuit diagram for the single stage 
fractional order High pass filter is shown in 
Fig.2. 

 
Fig.2. Fractional order High pass filter 
The characteristic equation for the circuit is, 
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Taking Laplace transform, the transfer 
function of the circuit is  
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Where ατ
RC

1=  is a constant. 

The impulse response is found to be, 
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The step response is found to be, 
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 The magnitude and phase of the transfer 
function are given by, 
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3. Results and conclusions 
 
3.1. Time-domain response of fractional 
order low-pass filter 

 
Fig.3.Time-domain response of fractional 
order low pass filter a) Impulse response b) 
Step response 
 
3.2 frequency response of fractional order 
low-pass filter 
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Fig.4. Magnitude and phase responses of 
Fractional order low-pass filter 

 
 
3.3. Time-domain response of fractional 
order high-pass filter 

 
Fig.5.Time-domain response of fractional 
order high pass filter a) Impulse response b) 
Step response 
 
3.4 Frequency response of fractional order 
High-pass filter 
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Fig.6. Magnitude and phase responses of 
Fractional order High-pass filter 
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From Figs.3, 4, 5&6, it can be 
observed that for lower values of α both time 
and frequency domain responses were 
inaccurate. For α >1, the magnitude plot 
shows a resonant peak, which increases as the 
order approaches 2. Similarly for �>1 the 
time-domain response exhibits oscillations 
which increase as the value of order 
approaches 2.The phase variations are linear 
over a narrow range of frequency for small 
values ofα.As the value of α increases the 
phase plot exhibits saturation behavior 
towards the asymptotic values .   
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