MULTILEVEL INVERTER TOPOLOGIES USING FLIPFLOPS

C.R.BALAMURUGAN S.SIVASANKARI
Arumai Engineering College, Tiruvannamalai, India
crbalain2010@gmail.com, sivayokesh1890@gmail.com

S.P.NATARAJAN
Annamalai University, Chidambaram, India
spn_annamalai@rediffmail.com

Abstract: Multilevel inverters are used in high power applications for reducing the voltage rating of the semiconductor switching devices. This paper proposes three types of multilevel inverter topologies by using flip flops and logic gates. The topologies are five level cascaded multilevel inverter, five level diode clamped multilevel inverter and five level flying capacitor multilevel inverter. The switching states of the topologies are formed as the Boolean equations by using the four bit counter. The equations are given as the input to the each switch of the multilevel inverter by using the logic gates. The proposed topologies can produce the five level output which are nearer to the sinusoidal wave. This proposed system is used to reduce the total harmonic distortion (THD) and also increases the performance of the system.

Key words: CMLI, DCMLI, FCMLI, flip flops, gates.

1. Introduction.

2. Five level Cascaded multilevel inverter using Flip flops
The general structure of the multilevel inverter is used to generate the sinusoidal waves from the several levels of input DC sources. The stress on each switching device can be reduced by using the multilevel inverter which is proportional to the number of levels of multilevel inverter. One of the proposed topology is five level Cascaded Multilevel Inverter (CMLI) which is shown in Fig. 1(a).

Fig. 1(a). Flip flop based five level Cascaded multilevel inverter
Table 1
Switching states of five level Cascaded multilevel inverter

<table>
<thead>
<tr>
<th>Switching states</th>
<th>Output voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 P2 P3 P4 P5 P6 P7 P8</td>
<td></td>
</tr>
<tr>
<td>1 1 0 0 1 1 0 0</td>
<td>2E</td>
</tr>
<tr>
<td>1 0 1 0 1 1 0 0</td>
<td>E</td>
</tr>
<tr>
<td>1 0 1 0 0 1 0 1</td>
<td>0</td>
</tr>
<tr>
<td>0 0 1 1 1 0 1 0</td>
<td>-E</td>
</tr>
<tr>
<td>0 0 1 1 0 0 1 1</td>
<td>-2E</td>
</tr>
</tbody>
</table>

The above table represents the switching states of the five level cascaded multilevel inverter. Here P1, P2, P3, P4, P5, P6, P7, P8 represents the switches of the multilevel inverter and E represents the input voltage source. To obtain 2E, P1, P2, P5, P6 switches will be turned ON and the other switches should be turned OFF. For E, P1, P3, P5, P6 switches are turned ON. For 0E, P1, P3, P6, P8 switches will be turned ON. To get -E, P3, P4, P5, P7 switches will be turned ON and the remaining switches must turned OFF. The switches P3, P4, P7, and P8 are turned ON for -2E. E denotes the input voltage of the multilevel inverter. By using these switching states and the four bit counter, the following Boolean equations are formed.

\[
P1 = C'B'A'+CBA+D' \quad (1)
\]

\[
P2 = D'CA'+D'B'A+D'C'B \quad (2)
\]

\[
P3 = C'B'A'+CBA+D \quad (3)
\]

\[
P4 = DCA'+DB'A+DC'B \quad (4)
\]

\[
P5 = C'B'+CB+D' \quad (5)
\]

\[
P6 = D'CB'+D'C'B \quad (6)
\]

\[
P7 = C'B'+CB+D \quad (7)
\]

\[
P8 = DCB'+DC'B \quad (8)
\]

The above equations are given as the input by using the logic gates and flip flops. The logic diagram for these equations is drawn by using the logic gates. This logic diagram for each switch is given as the input. The schematic diagram for JK flip flop is shown in Fig .1(b).

Here A, A’, B, B’, C, C’, D, D’ represents the output of the JK flip flop. These outputs are given as the input to the logic diagram which is formed by using logic gates for each switch. Each switch has the separate logic diagram. This topology produces the five level output with reduced Total Harmonic Distortion (THD). The simulation output of the five level flip flops based cascaded multilevel inverter is shown in Fig. 2.

A logic gate is a physical device which is used to implement a Boolean function that is, it performs a logical operation on one or more logical inputs and produces a logical output. The flip flops can be classified into four types. JK flip flop, SR flip flop, D flip flop and T flip flop. The THD analysis for five level CMLI is shown in Fig. 3.
3. Five level Diode Clamped multilevel inverter using Flip flops

The next proposed method is five level Diode Clamped Multilevel Inverter (DCMLI). The schematic diagram is shown in Fig. 4.

This proposed method can produce five output levels. The levels are \(2V_{dc}, V_{dc}, 0V_{dc}, -V_{dc}, -2V_{dc}\). The switching state is shown in table 2.

<table>
<thead>
<tr>
<th>Switching states</th>
<th>Output voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 S2 S3 S4 S1' S2' S3' S4'</td>
<td>2E</td>
</tr>
<tr>
<td>1 1 1 1 0 0 0 0</td>
<td>E</td>
</tr>
<tr>
<td>0 1 1 1 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 0 1 1 1 1 0 0</td>
<td>-E</td>
</tr>
<tr>
<td>0 0 0 0 1 1 1 1</td>
<td>-2E</td>
</tr>
</tbody>
</table>

In the level of 2E, the upper four switches will be turned ON. For E, the upper switches S2 to S4 and the lower switch S1' should be turned ON. For 0E, turn ON the upper switches S3, S4 and the lower switches S1’, S2’. In the level of E, the upper switch S4 and the lower switches S1’ to S3’ must be turned ON. For -2E, the lower four switches will be turned ON.

Boolean equations are listed below.

\[S1 = D'CB + D'C'B \] (9)
\[S2 = D'CA + D'B'A + D'C'B \] (10)
\[S3 = C'B'A + CBA + D' \] (11)
\[S4 = C'B + CB + D' \] (12)
\[S1' = C'B + CB + D \] (13)
\[S2' = C'B'A + CBA + D \] (14)
\[S3' = DCA + DB'A + DC'B \] (15)
\[S4' = DCB + DC'B \] (16)

Like the five level CMLI, this proposed system also can produce five level output with the help of flip flops and the logic gates. The simulation output of proposed five level diode clamped multilevel inverter is shown in Fig. 5.

4. Five level Flying Capacitor multilevel inverter using Flip flops

The next proposed topology is five level Flying
Capacitor Multilevel Inverter (FCMLI) using flip flops and logic gates. The schematic diagram of this proposed method is shown in Fig. 7.

The switching states of the above proposed method is shown in Table 3. These switching states are given as the input in the form of Boolean equation as the above two proposed topologies.

Table 3

<table>
<thead>
<tr>
<th>Switching states</th>
<th>Output voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 S2 S3 S4 S1' S2' S3' S4'</td>
<td></td>
</tr>
<tr>
<td>1 1 1 1 0 0 0 0</td>
<td>2E</td>
</tr>
<tr>
<td>1 1 1 0 1 0 0 0</td>
<td>E</td>
</tr>
<tr>
<td>1 1 0 0 1 1 0 0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0 0 1 1 1 0</td>
<td>-E</td>
</tr>
<tr>
<td>0 0 0 0 1 1 1 1</td>
<td>-2E</td>
</tr>
</tbody>
</table>

To obtain 2E, the upper four switches will be turned ON. For E, turn ON the upper three switches S1 to S3 and the lower switch S1’. In the level of 0E the upper switches S1, S2 and the lower switches S1’, S2’ should be turned ON. For –E the upper switch S1 and lower switches S1’, S2’, S3’ must be turned ON. To get -2E the lower four switches will be turned ON and the remaining switches should be turned OFF.

The Boolean equations of proposed method is,

\[S1 = C'B + CB + D' \] (17)

\[S2 = C'B'A' + CBA + D' \] (18)

\[S3 = D'CA' + D'B'A + D'C'B \] (19)

\[S4 = D'CB' + D'C'B \] (20)

\[S1' = C'B + CB + D \] (21)

\[S2' = C'B'A' + CBA + D \] (22)

\[S3' = DCA' + DB'A + DC'B \] (23)

\[S4' = DCB' + DC'B \] (24)

The simulation output of this proposed method is shown in Fig. 8.

![Fig. 8. Simulation output of Flip flop based five level flying capacitor multilevel inverter](image)

The total harmonic distortion analysis of this five level flying capacitor multilevel inverter topology is shown in Fig. 9.

\[\text{THD} = \frac{\sqrt{V_1^2 + V_2^2 + \ldots + V_n^2}}{V_1} \] (25)

Table 4

<table>
<thead>
<tr>
<th>Parameter of proposed three topologies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
</tr>
<tr>
<td>RMS value</td>
</tr>
</tbody>
</table>
The above table represents the total harmonic distortion and the RMS value of the three proposed topologies. These THD values are lower than the conventional topologies.

\[V_{\text{RMS}} = \frac{V_0}{\sqrt{2}} \]

(26)

5. Conclusion

In this paper flip flop based multilevel inverter topologies are presented. The topologies are five level cascaded multilevel inverter, diode clamped multilevel inverter and flying capacitor multilevel inverter. By using the flip flops and logic gates, the proposed inverter topologies can synthesize high quality output voltage near to sinusoidal wave. The circuit configuration is simple and easy to control. This method is mainly used to reduce the total harmonic distortion (THD) and also used to increase the performance of the system.

References

