ANALYSIS OF HARMONIC MINIMIZATION FOR INTERLEAVED SYNCHRONOUS BUCK CONVERTER USING VCPFC

R. Thangam S.P. Joy Vasantha Rani
1Assistant Professor, Department of Electrical Engineering, Saveetha School of Engineering, Thandalam, Chennai
2Assistant Professor, Department of Electronics Engineering, Madras Institute of Technology, Chrompet
thangamr.mit@gmail.com
jovinadekson@gmail.com

ABSTRACT
In this work power factor improvement and harmonic minimization for the interleaved synchronous buck converter connected through nonlinear load is proposed. The interleaved converter supplied with 240V and reaches 12V as output. The converter output always connected with nonlinear loads, causes less power factor with more harmonics. Active PLL with voltage controlled power factor controller is designed to reduce harmonics and to rise the power factor. The VCPFC controller designed using MATLAB Simulink. Controller output waveforms are examined and analyzed with other controller performances. The converter is rated with 2mA, 1mH, and 1000µF values. The chopper is tested for different resistive loads and inductive loads.

Keywords: Interleaved buck converter (IBC), voltage mode control, voltage controlled power factor correction (VCPFC), Total harmonic distortion (THD), Electromagnetic interference (EMI), Phase locked loop (PLL), Unity power factor (UPF).

I. INTRODUCTION
To maintain high power quality is most important factor for all electronic devices. Providing high quality power through PFC controller in primary section power electronic chopper achieves higher efficiency. Complete study of CCB PFC controller [1] were discussed. Rapid improvement of semiconductor products, increasing applications of power electronic products like commercial, residential purpose. Hence the power electronic products causes a reduction in power angle and increase in harmonics. To reduce this active PFC correction is important [2].

Distributed parallel converters doesn’t require centralized control and more tolerant for converter cell faults. It requires less connections inside each cell faults. If any interleaving cell fault occurs it doesn’t affect the main converter work. The remaining cell will work automatically among themselves [3]. UPF rectifier provides total minimized harmonic distortion, forward converter uses single conversion stage.

Ripple in the supply current are completely reduced using buck interleaved converter. Hence this procedure more advantageous. Interleaved Converter contains two shunt connected buck converters that operates in 180° phase shift [4].

To obtain UPF, In SMPS numerous control methods are implemented. Analog controllers are implemented to get UPF at low cost [5]. Analog controller uses hysteresis control technique has increased dynamic response, greater stability to achieve increased PF and low harmonics [6].

To Design analog controllers is costly and also implementation is difficult. Hence instead of hysteresis controller current controllers frequency based controllers were used for PFC design. The total system implemented in single chip with very low cost [10] with external multiplier included.

To remove the use of external multiplier, nonlinear control and one cycle control [11-12] were established. Digital controllers are replace all analog controllers because computational ability is improved with esteem to its Analog parts [13-14].

Digital, Analog and mixed controllers are applied to control interleaved step down converter to produce a controlled input current, output voltages same phase with input voltage obtaining improved PF and very less THD [15]. To decrease the ripple current produced by the power diode rectifier to achieve UPF nearer to unity and regulate the DC voltage. The scheme rectifier
connected to the PFC Buck Converter it compensates the ripple current produced by the diode. [16].

![Diagram of Two phase IBC controlled by PLL](image-url)

Fig. 1 Two phase IBC controlled by PLL

The diode rectifier ripples are formed then the ripples are minimized by capacitor. During this period, the main current is highly pulsating. This initiates to the decrease in power factor value and harmonics distortion existing in main current. This involves the use of PFCs important for power electronic devices[18].

The Interleaved Converter is executed using digital PSM controller. Digital controller uses Pulse skipping technique for to produce the pulses. Mathematical designing of Interleaved Converter and stability study of converter was discussed[19].

The proposed Digital pulse skipping controller supports to attain a controlled output voltage against all harmonics and disturbances in load. The Simulink model covers the design control circuit without and with PFC improvement circuit modelled using MATLAB/Simulink. It has been observed from the output THD of input current was minimized effectively and the phase angle between voltage and current also reduced[20].

The subsequent section gives the details of basic concepts of IBC, design specifications of IBC, mathematical modelling of IBC, controller design with PLL for VCPFC, MATLAB simulink design of converter with PFC. Last section gives conclusions.

II Interleaved Buck converter:

IBC consists of twofold buck converters are parallely connected. It is controlled by controller provided in the closed loop. Each MOSFET operated with different phases reduced by phase shift interleaving operation. To decrease the
A. Design of converter

\[
\frac{V_n}{V_i} = \frac{D}{D + \Delta} \quad (1)
\]

\[
\Delta = D \left(\frac{V_i}{V_n} - 1\right) \quad (2)
\]

\[
\bar{I}_0 = \frac{V_i T_i}{2L} D \Delta \quad (3)
\]

Now substitute equation (2) in (3)

\[
\bar{I}_0 = \frac{V_i T_i}{2L} D \left(D \frac{V_i}{V_n} - 1\right) \quad (4)
\]

Taking small signal values for \(D\) to \(d\) and \(I_0\) to \(i_0\)

\[
\bar{i}_0 \approx \frac{2I_0}{D} \Delta - \frac{D + \Delta}{R} \bar{V}_0 \quad (7)
\]

B. Inductor selection

When the chopping frequency is increased heat is produced in the inductor which is due to saturation, residual flux and hysteresis is imbalanced. Hence the proposed interleaving buck converter produces harmonics controller output. This can be overcome by properly selecting the coil with increased air gap.

The inductance value \(L_i\) derived as follows

\[
V_{Li} = L_i \frac{di}{dt} = L_i \left(\frac{\Delta L_i}{(1-D)f}\right) \quad (8)
\]

\[
L_i = \frac{V_{OUT} (1-D)}{f_{SW} \cdot \Delta L_i} \quad (9)
\]

Where \(f_{sw}\) is the switching frequency of the converter. Assuming 30% of ripple value allowed

\[
I_{PK} = I_{OUT} + \frac{\Delta L}{2} \quad (10)
\]

Where \(\Delta\) is the 30% of allowed ripple value.

\(I_{pk}=100A\)

Inductor must sustain the peak current up to 100A.

B. Capacitor selection
The output capacitor filters inductor current ripples and delivers the stable output voltage

\[\Delta I_{\text{Out}} = \frac{V_{\text{Out}}}{n_{\text{fSW}}} \left(1 - \frac{D}{L}\right) \] \hspace{1cm} (11)

\[C_{\text{out}} = \frac{(1-D)W_{\text{out}}}{n_{\text{fSW}} V_{\text{Out}}} \] \hspace{1cm} (12)

V DIGITAL CONTROLLER DESIGN WITH PLL

The output capacitor filters inductor current ripples and delivers the stable output voltage \(\Delta I_{\text{Out}} = \frac{V_{\text{Out}}}{n_{\text{fSW}}} \left(1 - \frac{D}{L}\right) \) \hspace{1cm} (11)

The output capacitor filters inductor current ripples and delivers the stable output voltage

Output 2: sawtooth w.t varying between 0 to 2\(\pi \)pi, matched on the zero-crossing (rising) of the basic of input signal.

i) Automatic gain control:

Compute the fundamental value of input 3 through a running window of one full cycle of fundamental frequency given by first input. The reference value is required for the calculation is given to the second input. The two outputs return respectively the magnitude and phase fundamental values are same. The basic cycle of simulation, the output value is held constant as mentioned by the input parameters. To calculate total value of second input over a running gap of one full cycle of frequency signal given by first input.

For the first rotation of basic frequency output maintained to the value stated in the starting input (DC component) parameter. The Minimum frequency parameter is used to limit the buffer part of the Variable Time Delay block used under the mask of the block.

ii) Multiplier block design

\[I_{\text{muo}} = \frac{k_m I_{\text{ac}} (V_{\text{comp}} - 1)}{V_{f}} \] \hspace{1cm} (13)

Where,

- Imuo-Multiplier output current
- Iac-Multiplier input current
- Vff-Feed forward voltage
- Vcomp- Comparator output voltage
- Vff=1.4
The digital regulator is designed in the two steps discussed here.

Step1: Mathematical design of controller the line voltage and the input voltage

\[v_x = V_s \sin \theta \]
\[v_1 = V_s |\sin \theta| \]
\[\theta = 2\pi f t L \]

\(\theta \) is the line phase angle

Voltage transfer ratio of PFC is required to vary the angle \(\theta \) in half period.

The voltage transfer value

\[T_{vv}(\theta) = \frac{V_o(\theta)}{V_s(\theta)|\sin(\theta)|} \]

Where \(f_{s} \approx f_{L} \)

Where \(V_o \) is the local average direct current output voltage from power factor converter. Where \(T_{vv} \) is line period the buck topology can not provide high voltage transfer ratio.

To achieve higher power factor

\[i_1 = Is|\sin \theta| \]
\[P_i = v_1 i_1 = V_i l_s \sin^2 \theta \]

And output power becomes

\[P_o = \frac{v_o}{V_o} i_o \]

Assume \(P_i = P_o \), the output current \(i_o \) gives,

\[i_o = \frac{V_s l_s \sin^2 \theta}{V_o} \]

For one full period two half cycles are the outputs,

\[i_o = 2 I_o \sin^2 \theta = I_o (1 - \cos 2\theta) \]

For better Power factor correction output current is required for a unity power factor as a function of the angle \(\theta \).

Two requirements for PFC

a) \(T_{vv} \) must be varied for one full cycle or half value period.

b) The output current also varied simultaneously over the half value period.

\[u(t) = K_p \left[e(t) + \frac{1}{T_i} \int_0^t e(t) dt + T_d \frac{de(t)}{dt} \right] \]

The \(T_d, T_i \) and \(K_p \) constant values are obtained by based on errors tuning respectively. PID controller’s Laplace transform is given by

Fig. 4 Automatic gain control in PLL

\[V_{o(PK)} = \frac{P_{in}}{2\pi f r C_{o} V_o} \] (14)

Where, \(f_r = 1.84V_{ac} \)

\[f_{s} \approx f_{L} \]
The parameters are tuned properly for digital controller and adapt the buck converter to achieve the best behaviour of system. The K_p, T_i and T_d values are found by using Nichols tuning and ruth array technique.

\[U(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) V(s) \] (25)

PLL controller modelling and IBC modelling established in this work. The digital controller is used to regulate the output voltage in fixed value. The PLL will lock the input frequency, Hence input voltage and current values inphase. The obtained value applied to multiplier block. Closed loop transfer functions are derived for discontinuous conduction mode. UPF and low THD nearly achieved.

VI MATLAB SIMULINK MODEL FOR IBC
Interleaved buck converter without VCPFC
MATLAB Simulink is used for implementing the interleaved synchronous buck converter circuit. The fig.5 shows the interleaved step down converter without power factor correction. Without power factor correction circuit the power factor values is 0.5 and Total harmonic values also very high value reaches approximately unity and low THD obtained. This low THD limit is with in the IEEE Interleaved buck converter PLL with VCPFC
MATLAB Simulink is used to implement the IBC circuit with PLL based VCPFC controller. PF 519 bounds. The Vo is controlled to a fixed value by the controller and input voltage and current in phase.

Fig.5 Interleaved buck converter without pfc
Fig. 6 Interleaved synchronous buck converter with PLL controlled VCPF

Fig. 7 a) Converter output current, capacitor current and output voltage

Fig. 7b) Interleaved synchronous buck converter with VCPFC output c) Rectified output
Fig 8a) Interleaved synchronous buck converter without pfc controller b) Interleaved synchronous buck converter with pfc output

Table I: PLL based interleaved buck for the Resistive load with Vin=230V

<table>
<thead>
<tr>
<th>Load value(Ω)</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout(V)</td>
<td>12.6</td>
<td>12.5</td>
<td>12.3</td>
<td>12.2</td>
<td>12.1</td>
<td>12.05</td>
</tr>
<tr>
<td>Io(A)</td>
<td>0.25</td>
<td>0.125</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.995</td>
<td>0.997</td>
<td>0.998</td>
<td>0.998</td>
<td>0.9983</td>
<td>0.9985</td>
</tr>
</tbody>
</table>

Table II: PLL based interleaved buck for the inductive resistive load with Vin=230V, L=150x10^{-3}H

<table>
<thead>
<tr>
<th>Load value(Ω)</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout(V)</td>
<td>12.6</td>
<td>12.5</td>
<td>12.4</td>
<td>12.3</td>
<td>12.1</td>
<td>12.1</td>
</tr>
<tr>
<td>Io(A)</td>
<td>0.25</td>
<td>0.12</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.995</td>
<td>0.997</td>
<td>0.998</td>
<td>0.998</td>
<td>0.998</td>
<td>0.9984</td>
</tr>
</tbody>
</table>

Table III: Performance comparison with other papers

<table>
<thead>
<tr>
<th>Parameters</th>
<th>This work</th>
<th>[25]</th>
<th>This work</th>
<th>[1]</th>
<th>This work</th>
<th>[4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{in}(V)</td>
<td>260</td>
<td>260</td>
<td>230</td>
<td>230</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>V_{out}(V)</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>L(H)</td>
<td>150 μ</td>
<td>150 μ</td>
<td>400</td>
<td>400</td>
<td>975</td>
<td>975</td>
</tr>
<tr>
<td>C(F)</td>
<td>1000 μ</td>
<td>990 μ</td>
<td>1000</td>
<td>1.5</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>LOAD in watts</td>
<td>2m, 200Ω</td>
<td>100</td>
<td>2m, 200Ω</td>
<td>90</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Controller</td>
<td>Interleaving approach with PLL with VCPFC</td>
<td>Improved constant on time controller</td>
<td>Interleaving approach with PLL with VCPFC</td>
<td>CCB PFC Controller</td>
<td>Interleaving approach with PLL with VCPFC</td>
<td>Nonlinear ripple feedback controller</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.96</td>
<td>0.93</td>
<td>0.935</td>
<td>0.92</td>
<td>0.94</td>
<td>-</td>
</tr>
</tbody>
</table>
CONCLUSION

Voltage controlled PFC buck converter designed and analyzed. This analysis focused to improve power factor at input side. The conventional design without PLL cannot achieve the power factor above 0.95. The complete design PLL based VCPFC achieves 0.998 P.F. This design procedure implemented in MATLAB Simulink for both with PFC and without PFC. Simulink results obtained for both inductive and resistive loads with input voltage 240 V, 2 mA. This PLL based VCPFC buck converter maintains the voltage approximately 12 V and P.F 0.998 across the load range 25% to 80%.

REFERENCE

6. L. Rossetto, G. Spiazzi, P. Tenti, “Control techniques for power factor correction converters”
8. Antonio Leon-Masich, Hugo Valderrama-Blavi, “A High-Voltage SiC-Based Boost

13. PHILIP C. TODD, “UC3854 Controlled Power Factor Correction Circuit Design”

