Enhancing the LVRT Capability of a DFIG Based Wind Power System by correlating the performance of SMES and SFCL

ANJU. M1 R. RAJASEKARAN2
1 PG Scholar, Department of EEE, SNS College of Technology, Coimbatore.
2 Asst. Professor, Department of EEE, SNS College of Technology, Coimbatore.
1 anju51011@gmail.com 2 rare457@gmail.com

Abstract - This paper proposes an exhaustive study about the performance analysis of Doubly Fed Induction Generator (DFIG) under abnormal condition. Now a day, majority of power network countenance the problem of grid connectivity issues. Wind Energy Conversion Systems are currently among economically available and viable renewable energy sources that have a highest penetration rate in recent years. Due to the large penetration level it will highlights grid connectivity issues that concerns system stability, power quality, protection and integration of wind turbines in a wind farms. SFCL (Superconducting Fault Current Limiter), which have the competence to limit the fault current in its operating range so protects the equipments from damage. SMES (Superconducting Magnetic Energy Storage) is mainly used to compensate both real and reactive power, thus the power quality gets enhanced. It has a significant role in the improvement of system frequency and voltage responses with less MW and MJ rating. Co-ordinated operation of SFCL – SMES thus used to enhance the power system stability and improve the LVRT (Low Voltage Ride Through) capability of wind power generation systems. LVRT capability of wind turbine is refers to the ability of wind power system to conquer the voltage variations if there is any unwanted conditions. Here DFIG based wind turbine plant is used for consideration, because it will provide smoothened power output nearly double than a conventional generator. And it have more simple and rugged construction also. Design of DFIG based wind power generation systems under fault condition with the help of SMES and SFCL is analysed by means of MATLAB/SIMULINK block set.

Index terms – DFIG (Doubly Fed Induction Generator), Low Voltage Ride Through (LVRT), SFCL (Superconducting Fault Current Limiter), SMES (Superconducting Magnetic Energy Storage).

I. INTRODUCTION

In recent years more attention has been given to induction machines because they are used for low and medium power application. An attractive advantages over conventional generators are lower unit cost, less maintenance and robust construction etc. Doubly-Fed Induction Generators (DFIG) are particularly suitable for isolated operation like hydro and wind developments [1].

Doubly fed induction generators (DFIGs) are currently dominating the renewable energy market. Over the last decades, DFIG-based wind turbines have been most preferred option for the high capacity wind farms because it have the ability to control the active and reactive power exchange within the network. DFIGs have the capability to operate in variable speed regions so we have to achieve a smoothened and twice the power than any other conventional generator will produce. In the development of wind turbine techniques, DFIG is becoming more popular because of its unique characteristics such as high efficiency, low cost and flexible control [2].

Most of the wind turbines face a problem of LVRT. One common LVRT solution is to install a crowbar circuit across the rotor terminals. When the rotor over current is detected, the crowbar circuit short circuits the rotor terminals and isolates the converters from the rotor. And thus Rotor Side Converter triggering is blocked. This provides conservative protection to the rotor circuit and the RSC changes the DFIG to a squirrel cage induction machine, which absorbs reactive power from the grid. As a result dynamic VAR compensators, such as static VAR compensators or static synchronous compensators are sometimes installed at the DFIG terminals to provide reactive power support during a grid fault [3].

Unbalanced grid faults degrade the performance of DFIG-based wind turbines. In fact, if voltage unbalance is not taken into account the stator and rotor currents will be highly unbalanced even with a small unbalanced stator voltage. The unbalanced currents will create unequal heating on stator and rotor windings which will produce a complete change in torque and power pulsations of the generator which is twice the line frequency [4].

Several control approaches have been presented for DFIG systems operating with unbalanced grid faults. The rotor-side system is decomposed in two separate models which are represented with positive and negative-sequence components respectively. Two parallel controllers which are expressed in the positive and negative-synchronous reference frame are also presented. The goal of the positive-sequence controller is to regulate
the rotor side converter as in the case of normal operating conditions [5].

II. DFIG BASED WIND POWER GENERATION

The majority of wind turbines are equipped with Doubly Fed Induction Generators (DFIGs). The wound rotor induction generator have stator which is directly connected to the grid and rotor mains is done by a Variable Frequency AC/DC/AC Converter (VFC). This have the ability to handle a fraction (25%-30%) of the total power to achieve full control of the generator. The Variable Frequency Controller consists of a Rotor side Converter (RSC) and a Grid-Side Converter (GSC) connected back-to-back by a dc-link capacitor in order to meet power factor requirement (e.g. -0.95 to 0.95) at the point of connection.

![Wind turbine model](image)

Fig. 1. Wind turbine model

A. Controller circuit of Rotor Side Converter (RSC)

The Rotor-Side Converter (RSC) applies the voltage to the rotor windings of the Doubly-Fed Induction Generator. The purpose of the rotor-side converter is to control the rotor currents such that the rotor flux position is optimally oriented with respect to the stator flux in order that the desired torque is developed at the shaft of the machine. The rotor-side converter uses a torque controller to regulate the wind turbine power output and measured the voltage or reactive power at the machine stator terminals. The power is measured in order to follow a pre-defined turbine power-speed characteristic to obtain the maximum power point.

In order to reduce the power error or rotor speed error to zero, a Proportional-Integral (PI) regulator is used at the outer control loop. The output of the regulator is the reference rotor current ‘i_ref’ that must be injected in the rotor winding by rotor-side converter. This q-axis component controls the electromagnetic torque ‘T_e’. The actual ‘i_q’ component of rotor current is compared with ‘i_ref’ and the error is minimized to zero by a current PI regulator at inner control loop. The output of this current controller loop is the voltage ‘V_{sc}’ which is generated by rotor-side converter with another similarly regulated ‘i_d’ and ‘V_{sc}’ component so the required 3-phase voltages applied to the rotor winding are obtained.

To describe the control scheme, the general Park’s model of an induction machine is introduced. Stator-orientated reference frame without saturation, the voltage vector equations are

\[V_s = \sqrt{3} R_s \frac{d i_s}{dt} \]
\[V_s = \sqrt{3} R_s + \frac{d a}{dt} \]

where ‘V_s’ is the stator voltage imposed by the grid. The rotor voltage, ‘V_{r}’ is controlled by the rotor-side converter and used to perform generator control. The flux vector equations are

\[\alpha = L_s^* i_s + L_{rs}^* i_r \]
\[\alpha = L_{ro}^* i_s + L_{r}^* i_r \]

The stator and rotor self-inductances are ‘L_s’ and ‘L_r’:

\[L_s = L_{ss} + L_{so} + L_{s} + L_{o} \]

Defining leakage factor,

\[\sigma = 1 - \frac{L_{ss}}{L_{sr}} \]

\[L_{so} = L_{ss} \]

\[V_{sc} = \frac{i_s^* R_s + \sigma L_s^* d i_s / dt - w_{slip} \alpha L_{r}^* i_r}{\sigma L_{r}^* i_r + L_{ro}^* L_{r}} \]

\[w_{slip} = \omega_r - \omega_t \]

The stator flux angle are calculated from

\[\alpha_s = \int (V_{sc} - \sigma R_s) dt \]

\[\theta_s = \tan^{-1} (\alpha_s / \alpha_d) \]

The control scheme for the rotor-side converter is organized in a generic way with two PI-controllers. Fig. 2 shows a schematic block diagram for the rotor-side converter control. The outer speed control loop or a reference torque imposed on the machine is used for the reference q-axis rotor current ‘i_q’. These two options may be termed as speed-control mode or torque-control mode for the generator, instead of regulating the active power directly. For speed-control mode one outer PI controller is to control the speed error signal in terms of maximum power point tracking.

![Rotor-Side Converter](image)

Fig. 2 The Rotor-Side Converter (RSC)

B. Controller circuit of Grid-Side Converter (GSC)

The grid-side converter aims to regulate the voltage of the dc capacitor link. Moreover, it is allowed to generate or absorb reactive power for voltage support requirements. The function is realized with two internal control loops as well an outer regulation loop. The reference current measured at the output of voltage regulator is ‘i_{ref}’ for the current regulator. The inner current regulator loop consists of a current regulator to control the magnitude and phase of the generated voltage of converter. The ‘i_{ref}’ is produced by the dc voltage regulator and specified q-axis ‘i_{ref}’ reference is shown in Fig.3.
III. SUPERCONDUCTING MAGNETIC ENERGY STORAGE (SMES)

A SMES device is a dc current controlled device that have the ability to stores energy in the magnetic field. The dc current flowing through a superconducting coil in a large magnet creates the magnetic field. The inductively stored energy (\(E\) in Joule) and the rated power (\(P\) in Watt) are commonly given in specifications for SMES devices and they can be expressed as follows:

\[
E = \frac{1}{2} L I^2
\]

\[
P = \frac{dE}{dt} = LI \frac{di}{dt} = VI
\]

where ‘\(L\)’ is the coil inductance, ‘\(I\)’ be the dc current flowing through the coil and ‘\(V\)’ is the voltage across the coil.

IV. SUPERCONDUCTING FAULT CURRENT LIMITER (SFCL)

SFCLs utilize superconducting materials to limit the current directly or to supply a DC bias current that affects the level of magnetization of a saturable iron core. While many FCL design concepts are being evaluated for commercial use and improvements in superconducting materials over the last 3 years have driven the technology to the forefront. This improvement is due to the ability of HTS materials to operate at temperatures around 70K instead of near 4K which is required by conventional superconductors. The advantage is that the refrigeration overhead associated with operating at the higher temperature is about 20 times less costly than the initial capital cost.

SFCLs use the transition of superconductors from zero to finite resistance to limit the fault currents that result from short circuits in electric power systems. Such short circuits can be caused by aged or accidentally
damaged insulation by lightning striking an overhead line or by other unforeseen faults. If not deliberately checked, the subsequent fault current is limited only by the impedance of the system between the location of the fault and the power sources.

Fig. 6. Superconducting Fault Current Limiter connected in series transmission line

V. METHODOLOGY OF DFIG FOR LVRT ENHANCEMENT WITH SFCL-MES

The fault-current limiting principle of the SFCL-MES is the same as that of the rectifier-bridge-type fault-current limiter. Under normal operation, the SC current is regulated to be higher than the peak amplitude of ‘\(n \cdot i_{abc} \)’ or ‘\(n \cdot i_{rabc} \)’ when the SFCL-MES is connected on the stator side or rotor side respectively. Where \(i_{abc} \), \(i_{rabc} \) are the stator and rotor current and ‘\(n \)’ be the isolation transformer turns ratio (stator or rotor side to the rectifier side) respectively.

During normal operation, the SC shows noninductive impedance and the forward voltage drop of the rectifier, the voltage drop of winding resistance and leakage inductance of isolation transformers are the only impedance of the circuit which are negligibly small. During a fault, when the fault current increases in amplitude and reaches the value of ‘\(\frac{i_{sc}}{n} \)’ (\(i_{sc} \) is the current of the SC). The SC will be inserted into stator or rotor circuit so increasing the fault circuit impedance and therefore limiting the fault current to a predetermined value.

The DFIG current-source incorporated with the SFCL-MES is shown in Fig. 7. The dc terminals of the GSC, diode rectifier and RSC are connected in series with a common dc-link capacitor. The ac terminal of the diode rectifier is connected in series with DFIG by three isolation transformers. Depending on the connection point of the isolation transformers the SFCL circuit can be connected in series with stator and SMES connected in parallel to stator.

VI. RESULTS AND DISCUSSION

Fig. 8. Modelling of DFIG based wind power generation under fault

Fig. 9. Torque Generation

Fig. 10. Conventional method for protection (Crow bar protection Scheme).

Fig. 11. Bridge Type SFCL

Fig. 12. DFIG with SFCL and SMES for Voltage regulation and Fault current limitation
A. UNDER FAULT CONDITION

Fig. 13. Voltage and Current in Stator and Grid
Under faulted condition.

Fig. 14. Rotor Voltage and Current

Fig. 15. Capacitor Voltage

B. CONVENTIONAL CONTROL (CROW BAR)

Fig. 16. Rotor Fault current under conventional control technique.

C. UNDER THE ACTION OF SFCL

Fig. 17. Limited Rotor voltage and current by the effect of SFCL

D. UNDER THE ACTION OF SMES

Fig. 18. Stator Voltage by the action of SMES

VII. CONCLUSION

In this paper a new topology has been proposed for grid connection during symmetrical fault condition to enhance the variable speed driven DFIG fed AC-DC-AC system fault ride-through capability. The proposed technology is simulated in MATLAB using powersim toolbox. Simulation results prove that the proposed control strategy is able to provide full ride through to the generator and power system capability can be improved. An SFCL-MES circuit is very intensive to enhance the LVRT capability and smoothened the power output of a DFIG based wind turbine. The SFCL-MES has no influence on the power generation of the DFIG based wind turbine. Co-ordinated operation of SMES with SFCL is used to improve the overall performance.

APPENDIX

Table 1. DFIG simulation values.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_s</td>
<td>Stator line voltage</td>
<td>690V</td>
</tr>
<tr>
<td>ω</td>
<td>Synchronous speed</td>
<td>2r/s</td>
</tr>
<tr>
<td>L_m</td>
<td>Magnetizing inductance</td>
<td>2.5pu</td>
</tr>
<tr>
<td>L_d, L_q</td>
<td>Stator and rotor leakage inductance</td>
<td>0.11, 0.07pu</td>
</tr>
<tr>
<td>R_s, R_r</td>
<td>Stator and rotor resistance</td>
<td>0.007pu</td>
</tr>
<tr>
<td>P</td>
<td>Number of pole pairs</td>
<td>2</td>
</tr>
<tr>
<td>S</td>
<td>Apparent power</td>
<td>1.5MW</td>
</tr>
<tr>
<td>N_c</td>
<td>Rotor to stator turns ratio</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2. Drive train details.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Rotor radius</td>
<td>31.5m</td>
</tr>
<tr>
<td>V_r</td>
<td>Rated wind speed</td>
<td>12m/s</td>
</tr>
<tr>
<td>ρ</td>
<td>Air density</td>
<td>1.29kg/m³</td>
</tr>
<tr>
<td>J_r</td>
<td>Rotor inertia</td>
<td>6.467x10⁶ kgm²</td>
</tr>
<tr>
<td>J_g</td>
<td>Generator inertia</td>
<td>34.44kgm²</td>
</tr>
<tr>
<td>B_d</td>
<td>Shaft damping coefficient</td>
<td>31901Nm/rad/s</td>
</tr>
<tr>
<td>K_s</td>
<td>Shaft stiffness coefficient</td>
<td>9.036x10⁶ Nm/rad</td>
</tr>
<tr>
<td>B_r</td>
<td>Rotor friction coefficient</td>
<td>91.87Nm/rad</td>
</tr>
<tr>
<td>B_g</td>
<td>Generator friction coefficient</td>
<td>0.2Nm/rad</td>
</tr>
<tr>
<td>n_g</td>
<td>Gearbox ratio</td>
<td>65.23</td>
</tr>
</tbody>
</table>
VIII REFERENCES

