A simple Human Simulating Intelligent PID for wind turbine Control under wind speed variation

Abdelhaq Amar bensaber1, Mustapha Benghanem1, Abdelmadjid Guerouad2, Mohammed Amar bensaber2
1University of Sciences and Technology of Oran
Email:abs.abdelhak@gmail.com, mbenghanem6@yahoo.fr, a.guerouad@yahoo.com.
2School of Computer Science 08 May 1945 Sidi Bel Abbès
E-mail: m.amarbensaber@esi-sba.dz

Abstract—DFIG is an attractive solution in variable wind turbines\cite{1, 2} because of its features like lessening losses, minimum cost, an improved efficiency and power control capabilities\cite{2}. Traditionally their control is founded on PID controller because it's simple ,robust which is advisable for linear systems. However, wind turbines components work as nonlinear systems where electromechanical parameters change frequently \cite{3}. Inspired by the PID simplicity, a Human Simulating Intelligent PID is suggest to contribute with some important features like simplicity, flexibility, self-learning and heftiness, ameliorate respond time, dealing with grid requirements. Matlab tests are introduced and compared.

Keywords-component: HIS-PID, fed induction generator (DFIG).Active and Reactive Power control, Maximum power point tracking, MPPT.

I. INTRODUCTION

Nowadays, energy production is moving towards the clean and inexhaustible energy because of the desire to reduce reliance on fossil fuels and the global warming issues. Wind energy treated as a future technology because it cost efficiency and reliability \cite{4, 5}. Thus, those factors became important topics in industry and research \cite{6, 7}. Control strategies are necessary to attain maximum performance. The DFIG WT's has been an attractive choice \cite{8, 9} because of to the independent power control plus it ability to deal with variable speed due to control of back-to-back converter scheme\cite{10, 11}, reduced mechanical stresses\cite{2}, recompense for power pulsations and torque \cite{12} and improve power quality\cite{2} , the major feature of proposed generator is that the power converter is sized between “20–30%” of entire power which means the cost is reduced\cite{13}, still the generator respond to voltage disturbances is critical, as expressed in \cite{2, 14} , to protect and remain connected to the network even with faults it is required to control the rotor converter. \cite{2, 14-16}, the control schemes are established with the vector control with the classical controller, but this controller can provide favorable performance restrictive under ideal voltage conditions. Furthermore, disturbances and parameter variations will leave us with imperfect performance. Therefore, papers have offered many control strategies for DFIG like Sliding Mode Control, smart control or adaptive algorithms \cite{1, 17, 18}, HOSMC \cite{6, 15, 16, 19, 20}. In this paper we used a simple and practicable control law named Human-Simulating Intelligent PID control; the main goal of HSIC is how controller itself simulates expert's behavior. Therefore, the system gain can be adjusted according to system output. The HSIC has the advantages of simple construction, quick response, strong anti-interference and strong robustness \cite{21-23}.

This article arranged as follows; turbine model and the MPPT are given in the second section. In part III, DFIG mathematical model is introduced. Section IV introduces DFIG Vector Control. In section V HIS-PID controller is proposed. At last, matlab results are given and debated.

II. MODEL OF THE TURBINE:

The power contained in kinetic energy form at a speed \(V\), surface\(A_1\), is expressed by\cite{14}:

\[
P_v = \frac{1}{2} \rho A_1 V^3
\]

(1)

Where \(\rho\) is the air density, but WT can regain just a part of that power:

\[
P_e = \frac{1}{2} \rho \pi R^2 V^3 C_p
\]

(2)

Where: \(R\) is the radius; \(C_p\) is power coefficient \cite{24}, this coefficient is a related with the wind and wind turbine rotation pace and the pitch angle. The speed ratio \(\lambda\) introduced by:

\[
\lambda = \frac{R \Omega}{V_e}
\]

(3)

Where \(R\) is the blades length, \(\Omega\) is the rotor angular speed. The theoretical extreme rate of \(C_p\) is given by the Betz limit: \(C_{p,\text{theo, max}} = 0.593 = 59.3\%\)

The torque and power coefficient \(C_p\) is represented in function of tip step ratio (\(\lambda\)) and the pitch angle (\(\beta\)) as fellow:

\[
C_p = C_1 \left(\frac{C_2}{\lambda^2} - C_3 \beta - C_4 \beta^3 - C_5 \right) \left(e^{C_6 / \lambda} \right)
\]

(4)

\[
\lambda = \frac{1}{\lambda + C_8}
\]

(5)

The slow shaft mechanical torque \(C_i\) is expressed by:

\[
C_i = \frac{P_e}{\Omega_e} = \frac{\pi}{2 \lambda} \rho R^3 V^2 C_p
\]

(6)
A. Mechanical System: Mechanical model will be represented in Figure 1

\[\Omega_m = G \Omega_t \]

(7)

\[C_m = \frac{J_t}{G^2} + J_m \left(\frac{d\Omega_m}{dt} + f_s \Omega_m \right) \]

(9)

Figure 1: Mechanical model

Where: Jₜ: the turbine side masses, while Jₘ: the electrical machine mass, G is the gearbox ratio. The generator speed and the fast shaft torque are given in:

B. Maximum Power Tracking MPPT

Aiming to extract the supreme power is the fundamental objective of the speed control. Many methods are used to ensure that [25, 26]. Direct speed controller (DSC) is presented in fig 2, its concept is founded on generating the optimal turbine speed for various wind speed value, and use it as speed reference. Next, with the help of a regulator the turbine rotational speed is controlled and the mechanical power aimed to be maximal for each operating point; the reference rotational speed is defined by:

\[\Omega_t^* = \frac{\lambda_{opt} v}{\beta} \]

(10) Thus, \(\Omega_m^* = G \Omega_t^* \)

(11)

Figure 2: Direct speed control.

We obtain the active power reference by the following equation:

\[P_{s_{-ref}} = C_{cem_{-ref}} \Omega_m \]

(12)

III. MATHEMATICAL MODEL OF DFIG:

Stator, rotor voltages: Eqts (13-16)

\[x_{Vq} = R_s I_{qr} + \frac{d\phi_{qr}}{dt} - \omega_s \phi_{qs} \]

\[V_{ds} = R_s I_{ds} + \frac{d\phi_{ds}}{dt} - \omega_s \phi_{qs} \]

\[V_{qs} = R_s I_{qs} + \frac{d\phi_{qs}}{dt} - \omega_s \phi_{qs} \]

Where:

\[\omega = \omega_r - \omega_m \]

(17)

Stator, rotor fluxes:

\[\phi_{ds} = L_s I_{ds} + M I_{qs} \]

(18)

\[\phi_{qs} = L_s I_{qs} + M I_{ds} \]

(19)

\[\phi_{dr} = L_s I_{dr} + M I_{qr} \]

(20)

\[\phi_{qr} = L_s I_{qr} + M I_{dr} \]

(21)

The electromagnetic torque is:

\[C_{em} = P \left(\phi_{ds} I_{qr} - \phi_{qs} I_{dr} \right) \]

(22)

The motion equation is:

\[C_{em} - C_r = J \frac{d}{dt} \Omega_m + f_s \Omega_m \]

(23)

\[J = \frac{J_{turbine}}{G^2} + J_g \]

(24)

Where: the load torque is \(C_r \), \(J \) is inertia in generator rotor, mechanical speed is \(\Omega_t \).

IV. THE DFIG VECTOR CONTROL:

In this section, the application of vector control DFIG is to achieve a decoupling between the quantities generating torque and flux. For this, we adjust the flux by \(I_{dq} \) and torque by \(I_{dq} \). Thus, the dynamics of DFIG will be reduced to that of a DC machine. This method can be outlined as shown in Fig 3.

The DFIG model can be written in the synchronous frame as shown in fig. 4 by: \(\phi_{ds} = \phi_{qs} \) and \(\phi_{qs} = 0 \) [7, 24, 26, 28]. By neglect stator resistances voltage will be:

\[V_{ds} = 0 \] and \(V_{qs} = V_s = \omega_s \phi_s \)

(25)
by control system dynamic process further, embarking on enlighten and intuitive detection and thus implementing the effect control of object without the precise mathematic model. The prime goal of HSIC is not the control object but how controller itself simulates controller’s construction and behavior function, the human controller produces a large control action to restrain the error; when the error is large, the HISC produces an inaccuracy control action, however when the error minimized, the HISC will steadily reduce the control action to limit the degressive rate of error and tend to prevent the overshoot; if the error is too small, the HISC produces a precise control action, the control amplitude is specified by the size of error and tendency that the error is changing. Based on the report above, it is easy to see that the HIS law is in a good agreement with the sigmoid-type function [21, 30, 31].

The main objective of the HIS-PID is to reduce the error and making it change along the desired law even with disturbances; HIS-PID is a procedure of automatically accumulating the control experiences, self-adapting of all kinds of disturbances and uncertainties [30]. The integral action must be introduced into the control law, as follows:

\[
\begin{align*}
 u &= k_m e_{max} \text{ sigmoid} \left(\frac{-k_p (e + k_d e_t \Delta t)}{e_{max}} \right) + k_i \\
 \sigma &= k_m e_{max} \text{ sigmoid} \left(\frac{-k_p (e + k_d e_t \Delta t)}{e_{max}} \right) \\
 u &= k_m e_{max} \text{ sigmoid} \left(\frac{-k_p (e + k_d e_t \Delta t)}{e_{max}} \right) - k_i \\
 \sigma &= e + k_d e
\end{align*}
\]

Where \(k_i, k_p, k_d, k_m, e_{max}\) are a positive constants. \(e\) is TOW error and it is defined by:

\[
\begin{align*}
 e &= \begin{cases}
 e_{max} & e \geq e_{max} \\
 e & -e_{max} \leq e < e_{max} \\
 -e_{max} & e \leq -e_{max}
 \end{cases}
\end{align*}
\]

The main features of the control laws (31) and (32) are:

- The integrator output remains constant when \(e + k_d e = 0\).
- Combine and use the prior knowledge.
Rapid adaptive or self-learning ability, better flexibility, stronger robustness.

In order to improve the HIS-PID, we will use the hyperbolic tangent function in order to smooth the control signal, the function is shown in Figure 6 and it's defined by:

\[
U_n = K \frac{S(x)}{|S(x)|} + \delta + \eta
\]
(34)

Thus,

\[
\delta = \begin{cases}
\delta_0 & \text{if } |S(x)| \geq \varepsilon \\
\delta_0 + \gamma \int S(x) dt & \text{if } |S(x)| < \varepsilon
\end{cases}
\]
(35)

\[
\eta = \begin{cases}
0 & \text{if } |S(x)| \geq \varepsilon \\
\xi \int S(x) dt & \text{if } |S(x)| < \varepsilon
\end{cases}
\]
(36)

Where: \(\delta, \eta, \xi, \varepsilon, \gamma\) are positive constants.

VI. SIMULATION RESULTS

In this section, simulation tests have been performed with the help of Matlab. DFIG performance will be compared with two different controllers. The PI and the HIS-PID will be tested and compared.

Reference tracking

Wind speed shown in Fig (7, 11) in order evaluates the designed control.
The electromagnetic torque is shown in Fig (10-A) is negative due to the generator operation. A very good decoupling between the two components of the rotor and stator current is obtained as shown in fig 10-C ensuring a decoupled control of powers Fig 8, 9 and 12 represent the stator active and reactive powers and its reference profiles using PID regulator and HIS-PID, we can notice that the dynamic response of the stator active power and reactive power under HIS-PID control is much faster than that under the conventional PID control and it track almost perfectly their references. This outcome tends to guarantee stability and the power quality even when there is a change in wind speed.
VII. CONCLUSION

In this article, a complete system to produce electrical energy with a doubly fed induction generator in wind turbine, incorporating a maximum power point tracker for dynamic power control has been presented. Control of the machine inverter provides a set of active and reactive powers exchanged between the grid and the machine. With the consideration of turbine variable velocity state and design controller for DFIG in form of using Human Simulating Intelligent PID Control was proposed, simulation results show that the proposed controller provides a notable efficiency, since it permits to track the optimum power quickly despite the speed wind changing. On the other hand, the stator power quantities show smooth waveforms, with great tracking indices. Consequently, undesirable mechanical stresses are avoided.

APPENDIX

The generator's parameters are presented below:

- \(R_s = 1.2 \Omega, R_r = 1.8 \Omega \)
- \(L_s = 0.1554 \text{H}, L_r = 0.1558 \text{H} \)
- \(M = 0.15 \)
- \(V_s = 380 \text{V}, V_r = 220 \text{V} \)
- \(P = 2 \)
- \(f_r = 50 \text{Hz} \)
- \(J = 0.042 \text{kg.m}^2 \)
- Aerodynamic coefficients \(C_1 = 0.5, C_2 = 116, C_3 = 0.4, C_4 = 0, C_5 = 5, C_6 = 21 \)

controller parameter:

\[
K_p = \frac{I_r}{L_r}, \quad K_i = \frac{K_p R_i}{L_r}, \quad K_{p,r} = \frac{L_r \sigma}{L_s \sigma} \cdot \frac{M V_r}{J}
\]

\[
K_{p,r} = \frac{K_{p,r} R_s}{L_r \sigma}
\]

References

http://dx.doi.org/https://doi.org/10.1016/j.ijepes.2015.07.036.

