APPLICATION OF BOND GRAPH TO PERMANENT MAGNET BRUSHLESS DC MOTOR DRIVE

V. SOWMYA SREE, N. RAVI SANKAR REDDY
Department of EEE, G. Pulla Reddy Engineering College (Autonomous)
Kurnool, Andhra Pradesh, India.
sowmya.sree14@gmail.com, netapallyravi@gmail.com

Abstract— This paper presents a study of BLDC motor drive modelling using classical method and bond graph theory. System equations are generated by using a step-by-step procedure from bond graph theory. Bond Graph method is rapidly developing to promote a new methodology of modelling and simulation of electrical systems that suits for multi-domain systems effectively. The dynamic behaviour of the BLDC motor drive has been studied from the simulation results that are obtained by using MATLAB/SIMULINK software package.

Key words— Bond graph, BLDC motor, MATLAB/SIMULINK

1. Introduction

The Brushless DC (BLDC) motor is being used in different applications such as industrial automation, automotive, aerospace, instrumentation and appliances since 1970’s and is considered as the optimal choice for long-term applications. It is a high performance motor providing large amounts of torque over a wide speed range. BLDC motors do not have brushes and requires less maintenance. Based on the shape of back-emf waveforms [6], the BLDC motor drives are classified into trapezoidal and sinusoidal type back-emf BLDC motors.

Bond graph is a domain-independent graphical description of physical systems dynamic behavior. In 1959, Prof. H.M. Paynter invented the idea of portraying systems in terms of power bonds, connecting the elements of the physical system to the junction structures. This power exchange portray of a system is called Bond Graph which is both power and information oriented. The idea was further developed by Karnopp and Rosenberg such that it could be used in practice. [1]

By this approach, a physical system can be represented by symbols and lines, identifying the power flow paths. The lumped parameter elements resistance, capacitance and inductance are interconnected in an energy conserving way by bonds and junctions resulting in a network structure. The flow of energy between two elements is always characterized by two generalized conjugated variables e (effort) and f (flow), of which the product is power P. [2, 4]

\[P = e f \]

In this technique, power flow is represented by a half bond. Every bond is associated with two variables, effort and flow and the causality indication.

A three phase, 4-pole, Y connected trapezoidal back-EMF type BLDC motor is modeled in two methods. The first method is using the mathematical equations derived from the equivalent circuit of the BLDC motor drive. The second approach is developing a bond-graph model of equivalent circuit of the BLDC motor drive and deriving state-space equation from bond-graph theory.

2. Bond Graph Standard Elements

2.1 Basic 1-Port Elements

2.1.1 R-Element:
The R-element is expressed as generalized friction and contains effort and flow variables. It controls dissipation of power.

\[f(t) = \frac{1}{R} e(t) \]

Fig. 1. R-bond

2.1.2 L-Element:
The inertia L-element expresses all effects containing effort and flow variables. It provides storage for power.
that includes inductance and inertia.

\[f(t) = \frac{1}{L} \int e(t) \, dt \]

\[e(t) = \frac{1}{C} \int f(t) \, dt \]

2.1.3 C-Element:

The capacitance C-element expresses all effects containing effort and flow variables. It provides storage for power including condensers, springs and accumulators.

\[f(t) = \frac{d e(t)}{d t} \]

\[e(t) = \frac{1}{C} \int f(t) \, dt \]

2.1.4 Effort & Flow Sources:

The active ports responds to the source.

2.2 Basic 2-Port Elements

Transformer and Gyrator are the two-port elements. The bond graph symbols for these elements are TF and GY, respectively. As the name suggests, two bonds are attached to these elements. [5]

2.2.1 TF-Element:

The transformer transforms either a flow into another flow or an effort into another effort. ‘m’ is the transformation ratio.

\[e_1 = me_2 \]

\[f_1 = mf_2 \]

2.2.2 GY-Element:

The gyrator transforms a flow into an effort or an effort into a flow. ‘r’ is the gyrator ratio.

\[e_1 = rf_2 \]

\[e_2 = rf_1 \]

2.3 Multi-Port Elements

These include 0-junction and 1-junction. [5]

2.3.1 1-Junction:

The flows on the bonds attached to a 1-junction are equal and the algebraic sum of the efforts is zero. For series connections 1-junctions are used.

\[e_1 f_1 + e_2 f_2 + e_3 f_3 + e_4 f_4 = 0 \]

2.3.2 0-Junction:

The efforts on the bonds attached to a 0-junction are equal and the algebraic sum of the flows is zero. For parallel connections 0-junctions are used.

\[e_1 f_1 - e_2 f_2 + e_3 f_3 - e_4 f_4 = 0 \]

3. Modelling of BLDC Motor

Fig. 9 shows the equivalent circuit of BLDC motor drive. The following are the assumptions made for modelling:
• Stator resistance and self inductance of all phases are equal and constant and mutual inductance is taken zero.
• Hysteresis and eddy current losses are eliminated.
• All semiconductor switches are ideal.

3.1 Classical Approach:
The three phase voltages are given by

\[
\begin{align*}
V_a &= R_i a + L \frac{di_a}{dt} + E_a \\
V_b &= R_i b + L \frac{di_b}{dt} + E_b \\
V_c &= R_i c + L \frac{di_c}{dt} + E_c
\end{align*}
\]

(1)

The three phases back-emf are given by

\[
\begin{align*}
E_a &= K_e \omega_m F_a(\theta) \\
E_b &= K_e \omega_m F_b(\theta - \frac{2\pi}{3}) = K_e \omega_m F_b(\theta) \\
E_c &= K_e \omega_m F_c(\theta + \frac{2\pi}{3}) = K_e \omega_m F_c(\theta)
\end{align*}
\]

(2)

The trapezoidal back-emf function \(F_a(\theta) \) is given by

\[
F_a(\theta) = \begin{cases}
1 & 0 \leq \theta \leq 2\pi/3 \\
-\frac{6}{\pi} \left(\theta - 2\pi/3 \right) & 2\pi/3 \leq \theta \leq \pi/2 \\
-1 & \pi/2 \leq \theta \leq 2\pi/3 \\
-1 + \frac{6}{\pi} \left(\theta - 5\pi/3 \right) & 5\pi/3 \leq \theta \leq 2\pi
\end{cases}
\]

(3)

The electromagnetic torque equation is given by

\[
T_e = \frac{E_{aia} + E_{bib} + E_{cic}}{\omega_m}
\]

(4)

The electromagnetic torque generated by the motor is also proportional to the torque constant \(K_t \) and product of current with electrical rotor position.

\[
T_e = K_t i_a F_a(\theta) + K_t i_b F_b(\theta) + K_t i_c F_c(\theta)
\]

(5)

The equation of motor for simple system is

\[
\frac{d\theta}{dt} = \frac{P}{2} \frac{\omega_m}{\omega}
\]

(7)

3.2 Bond Graph Approach:

The following step-by-step procedure [3] is required to generate system equations.

i) The system variables and sources given to the system by all the elements present in system are as follows:

1. Element \(L_a \) gives the flow \(f_{25} = p_1/L_a \)
2. Element \(L_b \) gives the flow \(f_{26} = p_2/L_b \)
3. Element \(L_c \) gives the flow \(f_{27} = p_3/L_c \)
4. Rotational element \(J \) gives the flow \(f_{22} = p_4/J \)
5. Element \(R_a \) gives the effort \(e_4 = R_a f_{23} \)
6. Element \(R_b \) gives the effort \(e_5 = R_b f_{24} \)
7. Element \(R_c \) gives the effort \(e_6 = R_c f_{25} \)
8. Element \(R_f \) gives the effort \(e_7 = R_f f_{26} \)

Where \(p_1, p_2, p_3 \) are the electrical momentums and \(p_4 \) is the angular momentum.
\(e \)'s and \(f \)'s are efforts and flows of system respectively.
ii) The efforts and flows given to the storage elements from the system with integral causality are as follows:
1. To La, system gives the effort \(e_{24} = \frac{dp}{dt} \)
2. To Lb, system gives the effort \(e_{26} = \frac{dp}{dt} \)
3. To Lc, system gives the effort \(e_{28} = \frac{dp}{dt} \)
4. To J, system gives the flow \(e_{20} = \frac{dq}{dt} \)

Applying KVL and KCL to 0- and k- junctions present in the system, the modelling equations for BLDC motor are given as:

\[
\begin{align*}
\frac{dX}{dt} &= AX + BU \\
A &= \begin{bmatrix} -R_a/L_a & 0 & 0 & -F_d(\theta) \ast K_{d} J 0 \\
0 & -R_b L_b & 0 & -F_b(\theta) \ast K_{d} J 0 \\
0 & 0 & -R_c L_c & -F_c(\theta) \ast K_{d} J 0 \\
F_d(\theta) \ast K_{d} L_a & F_b(\theta) \ast K_{d} L_b & F_c(\theta) \ast K_{d} L_c & -R_f J 0 \\
0 & 0 & 0 & J 0 \\
\end{bmatrix}
\]
\[
X = \begin{bmatrix} p1 \\
p2 \\
p3 \\
p4 \end{bmatrix}, \quad B = \begin{bmatrix} G_a(\theta) \\
G_b(\theta) \\
1/G_c(\theta) \\
0 \end{bmatrix}, \quad U = \frac{V_s}{2}
\]

The state-space model is defined by all the above equations:

\[
\frac{dX}{dt} = AX + BU
\]

Angular displacement is given by \(p4/J \) in radians.

The equations for three-phase torques, back-emfs and currents are given as follows:

\[
\begin{align*}
T_a &= e_{11} = F_a(\theta) \ast K_t \ast f(10) \\
T_b &= e_{19} = F_b(\theta) \ast K_r \ast f(14) \\
T_c &= e_{19} = F_c(\theta) \ast K_r \ast f(18) \\
E_a &= e_{12} = F_a(\theta) \ast K_e \ast f(13) \\
E_b &= e_{16} = F_b(\theta) \ast K_e \ast f(17) \\
E_c &= e_{20} = F_c(\theta) \ast K_e \ast f(21) \\
\end{align*}
\]

The ratings are DC voltage source = 24 V, No-load current = 8.6A, Moment of inertia = 0.00007 kgm², Back-emf constant = 0.058823 V/rad/sec, Torque constant = 0.05325 Nm/A, Stator resistance = 1.0 ohms, Stator inductance = 0.00005H and Damping constant = 0.000005 Nm/rad/sec.

The three-phase currents are obtained as shown in fig.12.

\[\text{Fig.11. Block diagram of BLDC mathematical model} \]

4. Generation of Inverter Pulses and Trapezoidal Back-emf Functions

A program [9] is written to generate the inverter pulses and Trapezoidal Back-emf functions with 120° phase shift as a function of rotor position.

- A three-phase sinusoidal input with 120° phase displacement is generated.
- A 3-phase to 2-phase conversion is done using d-q axis theory.
- The rotor position theta is defined from the 2-phase voltages.
- The pulses are generated in terms of input voltage source depending upon rotor position.
- The conduction period is 120° with 60° commutation intervals.

5. Results and Discussions

MATLAB/SIMULINK software package is used for the modelling and simulation of the BLDC motor with a time-period of 0.2 seconds.

The three-phase currents are obtained as shown in fig.12.

\[\text{Fig.11. Block diagram of BLDC mathematical model} \]

The three-phase currents are obtained as shown in fig.12.
The three-phase back-emf waveforms are as shown in Fig. 13.

Fig. 13. 3-phases back-emf of BLDC motor using mathematical model

The bond graph models are implemented in the form of causality arguments and state-space equations. The simulation time is taken as 0.2 seconds.

Fig. 16 shows the inverter pulses $Ga(\theta)$, $Gb(\theta)$, $Gc(\theta)$

Fig. 16. Pulse Pattern of BLDC motor drive

Fig. 17 shows the 3-phase Trapezoidal back-emf functions.

Fig. 17. Trapezoidal back-emf functions of BLDC motor drive

Fig. 18 shows the three-phase currents of BLDC motor drive.

Fig. 18. 3-phase currents of BLDC motor using mathematical model
starting value is high and reaches a no-load value of around 8.2Amps.

From fig.17, it is observed that the back-emfs are trapezoidal in shape. The linear relation between rotor torque and currents is obtained from this trapezoidal back-emfs.

From fig.19, it is seen that the torque is produced by the rotor continuously.

From fig.20 it is observed that there is continuous increase in the angular displacement. It is also observed that there is non-linearity at the starting because of motor acceleration.

Linear matrix inequalities (LMIs) optimization [10] is used for developing two state feedback sliding mode control schemes for position control of brushless DC motor drives to reduce harmonics obtained in the proposed open loop system. A state-space model is developed in this technique [12] for robust sliding mode control but is time consuming which is a closed loop control.

References:

