STUDY OF THE DISTRIBUTION OF LOADS BY NEWTON RAPHSON
METHOD IN POLAR COORDINATES

Authors: K. CHIKHI Second: C. FETHA
Department of Electrical Engineering
University of Batna
Algeria

Abstract: This article presents the Raphson – Newton method in polar co-ordinates for the study of the distribution of loads which is necessary for the evaluation continues of the current performance of the system and for the analysis of the influence of the variations to be envisaged for the development of the systems in case or the request of the loads increases.

Keys Words: Load Flow, . Newton Raphson, Power flow.

Introduction

Load flow calculations provide power flows and voltages for a specified power system subject to the regulating capability of generators, condensers, and tap changing under load transformers as well as specified net interchange between individual operating systems. This information is essential for the continuous evaluation of the current performance of a power system and for analyzing the effectiveness of alternative plans for system expansion to meet increased load demand, [1],[3]. These analyses require the calculation of numerous load flows for both normal and emergency operating conditions. The load flow problem consists of the calculations of power flows and voltages of network for specified terminal or bus conditions.

1. Equations of loads distribution.

The load flow problem can be solved by the Newton-Raphson method using a set of nonlinear equations. For n bus system:

\[S_i^* = P_i - jQ_i = V_i^* \sum_{k=1}^{n} Y_{ik} V_k \]

(2.1)

Specified real and reactive powers in terms of bus voltages:

\[S_1^* = P_1 - jQ_1 = I_1 V_1^* = \left(V_{11} V_1 + Y_{12} V_2 \right) V_1^* \]

(2.2)

\[S_2^* = P_2 - jQ_2 = I_2 V_2^* = \left(V_{21} V_1 + Y_{22} V_2 \right) V_2^* \]

In polar coordinates:

\[V_i = \left| V_i \right| e^{\delta_i} \]

(2.3)

\[Y_{ij} = \left| Y_{ij} \right| e^{\gamma_{ij}} \]
The balance of the active powers gives:
\[P_{G1} + P_{G2} = P_{D1} + P_{D2} + F_1 + P \]
\[+ F_2 = P_{D1} + P_{D2} + P_L \]
(2.7)

Where \(P_L \) represent the losses of powers.

- The balance of the reactive powers gives:
\[Q_{G1} + Q_{G2} = Q_{D1} + Q_{D2} + F_{1q} \]
\[+ F_{2q} = Q_{D1} + Q_{D2} + Q_L \]
(2.8)

Where \(Q_L \) represent the reactive power absorptive by inductances of lines.

If \(Q_1 \neq 0 \) : it is said that it is generated by the load capacities of lines.

- \(F_{1P}, F_{2P}, F_{1q}, F_{2q} \) are functions of the voltages and phases.

Therefore:
\[P_L = P_L \left(V_1 \right) \left(V_2, \delta_1, \delta_2 \right) \]
(2.9)

\[Q_L = Q_L \left(V_1 \right) \left(V_2, \delta_1, \delta_2 \right) \]

- The equations (2.6) lead to the difference in angle \(\delta_1 - \delta_2 \) and not the two angles separately.

- According to these equations there are 12 variables and 4 equations.

3- Solution of the load distribution problem.
- It is necessary to estimate them \(P_{Di} \) and them \(Q_{Di} \).
- We can specify the variables of control P_{G_i} et Q_{G_i}.
- The states variables remain unknown.
- The other problem which remainder is that of the angles which are given in the form of difference $\delta_i - \delta_j$ and no separate.

The stages to follow to find the solution of the problem of the load flow for a system of two bus is as follows:
- One fixes $\delta_1 = 0$.
- The total number of unknown factors is 5. $\left(\left|V_1\right|,\left|V_2\right|,\delta_1, P_{G_1}, Q_{G_1}\right)$. Reduced the number of variables of states to $3\left(\left|V_2\right|,\delta_2\right)$.
- One can specify the tension $\left|V_1\right|$ in bus; one will thus have like reference $\left(\left|V_1\right|,\delta_1\right)$. Then the number of unknown factors becomes 4: $\left(\left|V_2\right|,\delta_2, P_{G_1}, Q_{G_1}\right)$.

4- Newton-Raphson Algorithm applies to the load flow in polar coordinates.

If one applies the method of Newton-Raphson to the powers of the equation (2.19), \[4\], one obtains by considering that the bus of reference is the play of bar 1

By using another notation, one will have:
\[
\begin{bmatrix}
\Delta P_0 \\
\Delta Q_0 \\
\end{bmatrix} = J_0
\begin{bmatrix}
\Delta \delta \\
\Delta V \\
\end{bmatrix}
\]
from where
\[
\begin{bmatrix}
\delta_2 \\
V_3 \\
\end{bmatrix} = \begin{bmatrix}
\delta_1 \\
V_1 \\
\end{bmatrix} + J_0 \begin{bmatrix}
\Delta P_0 \\
\Delta Q_0 \\
\end{bmatrix}
\]
and
\[
\begin{bmatrix}
\delta_{2(1)} \\
V_{2(1)} \\
\end{bmatrix} = \begin{bmatrix}
\delta_{1(1)} \\
V_{1(1)} \\
\end{bmatrix} + J_1 \begin{bmatrix}
\Delta P_1 \\
\Delta Q_1 \\
\end{bmatrix}
\]
for iteration (1+1):
\[
\begin{bmatrix}
\delta_{2(1+1)} \\
V_{2(1+1)} \\
\end{bmatrix} = \begin{bmatrix}
\delta_{1(1)} \\
V_{1(1)} \\
\end{bmatrix} + J_1 \begin{bmatrix}
\Delta P_1 \\
\Delta Q_1 \\
\end{bmatrix}
\]

5- Example of load flow calculation

The description above applies to a load bus, where the active power and reactive power flow are specified and the voltage magnitude and angle is to be calculated, [5], [6].

1- Floating bus 2: generator bus 3: load bus

Nodal admittance matrix:
\[
\begin{bmatrix}
1 \\
I_2 \\
I_3 \\
\end{bmatrix} = \begin{bmatrix}
-j9 & j4 & j5 & V_1 \\
-j4 & -j14 & j10 & V_2 \\
-j5 & j10 & -j15 & V_3 \\
\end{bmatrix}
\]

Values for \(P_2, P_3, Q_3 \) are given, so the iterative solution centres on these quantities.

The bus voltages are:

\[
V_1 = 1.0 \angle 0^0 \\
V_2 = 1.1 \angle \delta_2^0 \\
V_3 = \| V_3 \| \angle \delta_3^0 \\
\]

so the solution variables are \(\delta_2^0, V_3^0, \delta_3^0 \)

Express the set values in terms of the variables:

\[
S_2 = V_2 I_2^* = 1.1 \angle \delta_2^0 \left(j4 V_1 - j14 V_2 - j10 V_3^* \right) \\
= 4.4 \angle (\delta_2^0 - 90^0) + 16.9 \angle (90^0) + 11 \angle (\delta_2 - \delta_3 - 90^0) \\
\Rightarrow P_2 = 4.4 \cos (\delta_2^0 - 90^0) + 11 \angle (\delta_2^0 - \delta_3 - 90^0) \\
Q_3 = 5.0 \sin (\delta_3^0 + 90^0) + 11 \angle (\delta_3 - \delta_2 - 90^0) + 15 \angle V_3^2
\]

Iterative solution: starting with initial estimates of \(\delta_2^0, V_3^0, \delta_3^0 \)

1- Calculate power and reactive power errors:

\[
\Delta P_2 = P_2 - P_2 S_2 \\
\Delta Q_3 = Q_3 - Q_3 S_3 \\
\]

2- Jacobian elements

\[
\frac{\partial P_2}{\partial \delta_2} = -4.4 \sin (\delta_2^0 - 90^0) - 11 V_3 \sin (\delta_2 - \delta_3 - 90^0) \\
\frac{\partial P_2}{\partial V_3} = 11 V_3 \sin (\delta_2 - \delta_3 - 90^0) \\
\frac{\partial Q_3}{\partial V_3} = 11 \cos (\delta_2 - \delta_3 - 90^0)
\]

3- Invert the Jacobian and hence calculate the corrections to the estimates.
4- Form new estimates

\[\delta_2 \rightarrow \delta_2 + \Delta \delta_2 \rightarrow \delta_3 + \Delta \delta_2 \rightarrow V_3 + \Delta V_3 \]

and repeat from stage 1. Sample results:

<table>
<thead>
<tr>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(V_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0°</td>
<td>0.9</td>
</tr>
<tr>
<td>-20°</td>
<td>4.8</td>
<td>1.24</td>
</tr>
<tr>
<td>-0.34</td>
<td>-3.82</td>
<td>1.09</td>
</tr>
<tr>
<td>-0.23</td>
<td>-5.21</td>
<td>1.05</td>
</tr>
<tr>
<td>-0.22</td>
<td>-5.28</td>
<td>1.05</td>
</tr>
<tr>
<td>-0.22</td>
<td>-5.28</td>
<td>1.05</td>
</tr>
</tbody>
</table>

From which the power flow can be calculated:

\[P_1 = 0.5 \text{pu} \quad P_{13} = 0.483 \text{pu} \]

\[P_{12} = 0.017 \text{pu} \quad P_{23} = 1.017 \text{pu} \]

6- Illustrative examples

A 5-bus system shown in fig. 6.1 is test to illustrate the procedure of proposed method. In this system, bus 3, 4 and 5 are PQ bus, bus 2 is PV bus and bus 1 is slack bus.

7- Conclusion

This paper presents an alternative to the way the load flow equations are currently solved. Instead of combining the nodal equations and the bus constraints into a single set of 2 nonlinear equations, the NR method is applied to the two primitive sets of equations, [2]. The enlarged model, in which current injections are retained in the state vector, leads to a very simple solution methodology if polar coordinates are adopted. A straightforward approach to dealing with PV buses is also proposed. Experiments confirm that, depending on the number of PV buses, the computational effort per iteration ranges between 50 and 80% of that required by other formulations. Not only comes this saving from the simplicity of the Jacobian terms, as in other polar-based methods, but from the mismatch vector computation as well, particularly when many zero-injection buses are present, [7]. While the convergence rate of the proposed method, when transmission networks are solved, is similar to that of existing implementations, a noticeable improvement is obtained when dealing with distribution networks.

References

analysis using distflow, Gauss-Seidel, and optimal load flow algorithms”, IEEE 1998. 0-7803-4314-x/98

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Bus2</th>
<th>Bus3</th>
<th>Bus4</th>
<th>Bus5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>¹V₂</td>
<td>²δ₂ = (Rd)</td>
<td>³V₃</td>
<td>³δ₃ = (Rd)</td>
</tr>
<tr>
<td>0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1.0562</td>
<td>-2.75889</td>
<td>1.03579</td>
<td>-5.05317</td>
</tr>
<tr>
<td>2</td>
<td>1.04755</td>
<td>-2.80341</td>
<td>1.02433</td>
<td>-4.99892</td>
</tr>
<tr>
<td>3</td>
<td>1.04755</td>
<td>-0.00078</td>
<td>1.02433</td>
<td>0.00095</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Bus2</th>
<th>Bus3</th>
<th>Bus4</th>
<th>Bus5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔP₂</td>
<td>ΔQ₂</td>
<td>ΔP₃</td>
<td>ΔQ₃</td>
</tr>
<tr>
<td>1</td>
<td>0.50000</td>
<td>1.18500</td>
<td>-0.37500</td>
<td>0.103000</td>
</tr>
<tr>
<td>2</td>
<td>-0.09342</td>
<td>-0.03857</td>
<td>-0.00102</td>
<td>-0.003586</td>
</tr>
<tr>
<td>3</td>
<td>-0.00323</td>
<td>0.00040</td>
<td>0.00018</td>
<td>-0.000530</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Bus2</th>
<th>Bus3</th>
<th>Bus4</th>
<th>Bus5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q₂</td>
<td>P₃</td>
<td>Q₃</td>
<td>P₄</td>
</tr>
<tr>
<td>1</td>
<td>-0.30000</td>
<td>-0.98500</td>
<td>-0.07500</td>
<td>-0.28000</td>
</tr>
<tr>
<td>2</td>
<td>0.293392</td>
<td>0.23857</td>
<td>-0.44898</td>
<td>-0.11414</td>
</tr>
<tr>
<td>3</td>
<td>0.203230</td>
<td>0.19996</td>
<td>-0.45018</td>
<td>-0.14947</td>
</tr>
</tbody>
</table>